• Title/Summary/Keyword: steel model

Search Result 4,477, Processing Time 0.034 seconds

A Study on Prediction Model of Chloride ion Permeation of Cement Mortar by Steel Powder (염해환경에서의 염화물이온 침투 예측에 관한 연구)

  • Kim, Jeong-Jin;Park, Soon-Jeon;Ko, Joo-Hwan;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.513-516
    • /
    • 2008
  • In this study the prediction model of Chloride Ion progress rate of concrete using steel powder as an addition is developed, in which the reduction of not only the diffusion rate of $Cl^-$ but also the corrosion rate by replenishment of pore by corrosion products. The model is based on the diffusions of $Cl^-$ and its reaction with $Fe^{2+}$, in chloride attack progression region. The model can also explain the characteristics of chloride ion permeation resistance of concrete that the matrix is densified due to corrosion products. The prediction by the model agreed well the experimental data in which the concrete using steel powder, and it showed the lower rate in long-term age to Chloride Ion progress rate than the concrete without steel powder. Consequently the model can predict Chloride Ion progress rate of concrete exposed in the atmosphere regardless of the water-to-cement raito, the amount of the content of steel powder, etc.

  • PDF

Modeling and optimization of infill material properties of post-installed steel anchor bolt embedded in concrete subjected to impact loading

  • Saleem, Muhammad
    • Smart Structures and Systems
    • /
    • v.29 no.3
    • /
    • pp.445-455
    • /
    • 2022
  • Steel anchor bolts are installed in concrete using a variety of methods. One of the most common methods of anchor bolt installation is using epoxy resin as an infill material injected into the drilled hole to act as a bonding material between the steel bolt and the surrounding concrete. Typical design standards assume uniform stress distribution along the length of the anchor bolt accompanied with single crack leading to pull-out failure. Experimental evidence has shown that the steel anchor bolts fail owing to the multiple failure patterns, hence these design assumptions are not realistic. In this regard, the presented research work details the analytical model that takes into consideration multiple micro cracks in the infill material induced via impact loading. The impact loading from the Schmidt hammer is used to evaluate the bond condition bond condition of anchor bolt and the epoxy material. The added advantage of the presented analytical model is that it is able to take into account the various type of end conditions of the anchor bolts such as bent or U-shaped anchors. Through sensitivity analysis the optimum stiffness and shear strength properties of the epoxy infill material is achieved, which have shown to achieve lower displacement coupled with reduced damage to the surrounding concrete. The accuracy of the presented model is confirmed by comparing the simulated deformational responses with the experimental evidence. From the comparison it was found that the model was successful in simulating the experimental results. The proposed model can be adopted by professionals interested in predicting and controlling the deformational response of anchor bolts.

Optimization of steel-concrete composite beams considering cost and environmental impact

  • Tormen, Andreia Fatima;Pravia, Zacarias Martin Chamberlain;Ramires, Fernando Busato;Kripka, Moacir
    • Steel and Composite Structures
    • /
    • v.34 no.3
    • /
    • pp.409-421
    • /
    • 2020
  • In the optimized structure sizing, the optimization methods are inserted in this context in order to obtain satisfactory solutions, which can provide more economical structures, besides allowing the consideration of the factors related to the environmental impacts in the structural design. This work proposes a mathematical model for the optimization of steel-concrete composite beams aiming to minimize the monetary cost and the environmental impact, using the Harmonic Search optimization method. Discrete variables were the dimensions of the steel profiles and the thickness of the collaborating slab of the composite steel-concrete beam. The proposed model was implemented in Fortran programming language and based on improvements in the structure of the optimization method proposed by Medeiros and Kripka (2017). To prove the effectiveness and applicability of the model, as well as the Harmonic Search method, analyzes were performed with different configurations of steel-concrete composite beams, in order to provide guidelines that make the use of these systems more streamlined. In general, the Harmonic Search optimization method has proved to be efficient in the search for the optimized solutions, as well as important considerations on the optimization of the monetary and environmental costs of steel-concrete composite beams were obtained from the developed examples.

Cyclic behaviour of infilled steel frames with different beam-to-column connection types

  • Sakr, Mohammed A.;Eladly, Mohammed M.;Khalifa, Tarek;El-Khoriby, Saher
    • Steel and Composite Structures
    • /
    • v.30 no.5
    • /
    • pp.443-456
    • /
    • 2019
  • Although numerous researchers demonstrated the significant difference in performance between the various beam-to-column connection types, most of the previous studies in the area of infilled steel frames focused on the behaviour of frames with welded connections. Therefore, there is a need for conducting studies on infilled steel frames with other common connection types (extended endplate with and without rib stiffeners, flush endplate and shear connections). In this paper, firstly, a two-dimensional finite-element model simulating the cyclic response of infilled steel frames was presented. The infill-frame interaction, as well as the interactions between connections' components, were properly modelled. Using the previously-validated model, a parametric study on infilled steel frames with five different beam-to-column connection types, under cyclic loading, was carried out. Several parameters, including infill material, fracture energy of masonry and infill thickness, were investigated. The results showed that the infilled frames with welded connections had the highest initial stiffness and load-carrying capacity. However, the infilled frames with extended endplate connections (without rib stiffeners) showed the greatest energy dissipation capacity and about 96% of the load-carrying capacity of frames with welded connections which indicates that this type of connection could have the best performance among the studied connection types. Finally, a simplified analytical model for estimating the stiffness and strength of infilled steel frames (with different beam-to-column connection types) subjected to lateral cyclic loading, was suggested.

Nonlinear Buckling Analysis of H-Type Honeycombed Composite Column with Rectangular Concrete-Filled Steel Tube Flanges

  • Ji, Jing;Xu, Zhichao;Jiang, Liangqin;Yuan, Chaoqing;Zhang, Yunfeng;Zhou, Lijian;Zhang, Shilong
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1153-1166
    • /
    • 2018
  • This paper was concerned with the nonlinear analysis on the overall stability of H-type honeycombed composite column with rectangular concrete-filled steel tube flanges (STHCC). The nonlinear analysis was performed using ABAQUS, a commercially available finite element (FE) program. Nonlinear buckling analysis was carried out by inducing the first buckling mode shape of the hinged column to the model as the initial imperfection with imperfection amplitude value of L/1000 and importing the simplified constitutive model of steel and nonlinear constitutive model of concrete considering hoop effect. Close agreement was shown between the experimental results of 17 concrete-filled steel tube (CFST) specimens and 4 I-beams with top flanges of rectangular concrete-filled steel tube (CFSFB) specimens conducted by former researchers and the predicted results, verifying the correctness of the method of FE analysis. Then, the FE models of 30 STHCC columns were established to investigate the influences of the concrete strength grade, the nominal slenderness ratio, the hoop coefficient and the flange width on the nonlinear stability capacity of SHTCC column. It was found that the hoop coefficient and the nominal slenderness ratio affected the nonlinear stability capacity more significantly. Based on the results of parameter analysis, a formula was proposed to predict the nonlinear stability capacity of STHCC column which laid the foundation of the application of STHCC column in practical engineering.

Study of the longitudinal reinforcement in reinforced concrete-filled steel tube short column subjected to axial loading

  • Alifujiang Xiamuxi;Caijian Liu;Alipujiang Jierula
    • Steel and Composite Structures
    • /
    • v.47 no.6
    • /
    • pp.709-728
    • /
    • 2023
  • Experimental and analytical studies were conducted to clarify the influencing mechanisms of the longitudinal reinforcement on performance of axially loaded Reinforced Concrete-Filled Steel Tube (R-CFST) short columns. The longitudinal reinforcement ratio was set as parameter, and 10 R-CFST specimens with five different ratios and three Concrete-Filled Steel Tube (CFST) specimens for comparison were prepared and tested. Based on the test results, the failure modes, load transfer responses, peak load, stiffness, yield to strength ratio, ductility, fracture toughness, composite efficiency and stress state of steel tube were theoretically analyzed. To further examine, analytical investigations were then performed, material model for concrete core was proposed and verified against the test, and thereafter 36 model specimens with four different wall-thickness of steel tube, coupling with nine reinforcement ratios, were simulated. Finally, considering the experimental and analytical results, the prediction equations for ultimate load bearing capacity of R-CFSTs were modified from the equations of CFSTs given in codes, and a new equation which embeds the effect of reinforcement was proposed, and equations were validated against experimental data. The results indicate that longitudinal reinforcement significantly impacts the behavior of R-CFST as steel tube does; the proposed analytical model is effective and reasonable; proper ratios of longitudinal reinforcement enable the R-CFSTs obtain better balance between the performance and the construction cost, and the range for the proper ratios is recommended between 1.0% and 3.0%, regardless of wall-thickness of steel tube; the proposed equation is recommended for more accurate and stable prediction of the strength of R-CFSTs.

Residual Stress Analysis of the Overlay Weld on the Dissimilar Metal Butt Weld (이종재이종재료 Butt 용접에 대한 Overlay 용접의 잔류응력해석)

  • Kim, Kang-Soo;Lee, Ho-Jin;Lee, Bong-Sang;Jung, In-Chul;Byeon, Jin-Gwi;Park, Kwang-Soo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.534-537
    • /
    • 2008
  • In recent years, the dissimilar metal, Alloy 82/182 welds used to connect stainless steel piping and low alloy steel or carbon steel components in nuclear reactor piping system have experienced cracking due to primary water stress corrosion(PWSCC). It is well known that one reason of the cracking is the residual stress by the weld. But, it is difficult to estimate exactly weld residual stress due to many parameters of welding. In this paper, the analysis of 3 FEM models made by ABAQUS Code is performed to estimate exactly the weld residual stress on the dissimilar metal weld. 3 FEM models are Butt model, Repair model and Overlay model and are the plane.strain 2D model. The thermal analysis and the stress analysis are performed on each model and the residual stresses on each model were calculated and compared respectively. Also, the specimen of Butt model was made and the residual stresses were measured by X-Ray method and Hole Drilling Technique. These results were compared with the FEM result of Butt model.

  • PDF

Development of Data Model for Design Information Representation of Steel Bridges (강교량 설계정보 표현을 위한 데이터모델 개발)

  • 정연석;이상호
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.2
    • /
    • pp.105-117
    • /
    • 2004
  • In each industry field, many engineers have tried to develop integrated environments using information technology. The core technology in building integrated environments is the database based on standardized information. To meet the requirements, this study builds a database with detailed design information as a part of integrating digital information generated from every work of steel bridges. The data model used to build the database was developed based on the international standard, namely ISO/STEP. The data model is classified into geometric and non-geometric parts to represent the design information of steel bridges. The geometric parts are represented by a three dimensional solid model so that they may be able to reuse existing information. Also, the non-geometric parts represent information requirements that are analyzed by the development method of standard data model. To verify the data model, this study validates the syntax of the model on EXPRESS Engine and verifies the validation of the model by applying the design data of Hannam bridge to the database.

An improved polynomial model for top -and seat- angle connection

  • Prabha, P.;Marimuthu, V.;Jayachandran, S. Arul;Seetharaman, S.;Raman, N.
    • Steel and Composite Structures
    • /
    • v.8 no.5
    • /
    • pp.403-421
    • /
    • 2008
  • The design provisions for semi-rigid steel frames have been incorporated in codes of practice for steel structures. In order to do the same, it is necessary to know the experimental moment-relative rotation (M-${\theta}_r$) behaviour of beam-to-column connections. In spite of numerous publications and collection of several connection databases, there is no unified approach for the semi-rigid design of steel frames. Amongst the many connection models available, the Frye-Morris polynomial model, with its limitations reported in the literature, is simple to adopt at least for the linear design space. However this model requires more number of connection tests and regression analyses to make it a realistic prediction model. In this paper, 3D nonlinear finite element (FE) analysis of beam-column connection specimens, carried out using ABAQUS software, for evaluating the M-${\theta}_r$ behaviour of semi-rigid top and seat-angle (TSA) bolted connections are described. The finite element model is validated against experimental behaviour of the same connection with regard to their moment-rotation behaviour, stress distribution and mode of failure of the connections. The calibrated FE model is used to evaluate the performance of the Frye-Morris polynomial model. The results of the numerical parametric studies carried out using the validated FE model have been used in proposing modifications to the Frye-Morris model for TSA connection in terms of the powers of the size parameters.

Development of Integrated Model of Boiler and Its Supporting Steel Structure of Coal-Fired Power Plant for Finite Element Analysis (유한요소해석을 위한 석탄화력발전소의 보일러와 지지 철골의 통합모델 개발)

  • Lee, Boo-Youn
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.4
    • /
    • pp.9-19
    • /
    • 2020
  • An integrated finite element model composed of a boiler and its supporting steel structure for a 375-MW coal-fired power plant was developed. This study used the developed model for seismic analysis using SAP2000 software. For the complex superheaters, reheaters, economizers, and membrane walls of the boiler, which consisted of numerous tubes, a method of modeling them by the equivalent elements in the viewpoint of stiffness and/or inertia was proposed. In addition, a method of modeling for the connection between the boiler and steel structure was proposed. Many hangers that connect the boiler to the girders of a steel structure were transformed into equivalent hangers by decreasing the number. The displacements of the boiler stoppers on the buckstay and the posts of the steel structure were coupled by considering their interface condition. Static analysis under the self-loading condition for the developed integrated model was implemented, and the results of deformation indicated that the behavior of the steel members and the major components of the boiler were appropriate. In conclusion, the integrated model developed in this study can be used to evaluate the safety of the boiler and steel structure under seismic loads.