• Title/Summary/Keyword: steel model

Search Result 4,477, Processing Time 0.025 seconds

Analysis of seismic behavior of composite frame structures

  • Zhao, Huiling
    • Steel and Composite Structures
    • /
    • v.20 no.3
    • /
    • pp.719-729
    • /
    • 2016
  • There are great needs of simple but reliable mechanical nonlinear behavior analysis and performance evaluation method for frames constructed by steel and concrete composite beams or columns when the structures subjected extreme loads, such as earthquake loads. This paper describes an approach of simplified macro-modelling for composite frames consisting of steel-concrete composite beams and CFST columns, and presents the performance evaluation procedure based on the pushover nonlinear analysis results. A four-story two-bay composite frame underground is selected as a study case. The establishment of the macro-model of the composite frame is guided by the characterization of nonlinear behaviors of composite structural members. Pushover analysis is conducted to obtain the lateral force versus top displacement curve of the overall structure. The identification method of damage degree of composite frames has been proposed. The damage evolution and development of this composite frame in case study has been analyzed. The failure mode of this composite frame is estimated as that the bottom CFST columns damage substantially resulting in the failure of the bottom story. Finally, the seismic performance of the composite frame with high strength steel is analyzed and compared with the frame with ordinary strength steel, and the result shows that the employment of high strength steel in the steel tube of CFST columns and steel beam of composite beams benefits the lateral resistance and elasticity resuming performance of composite frames.

Simplified robustness assessment of steel framed structures under fire-induced column failure

  • Jiang, Binhui;Li, Guo-Qiang;Yam, Michael C.H.
    • Steel and Composite Structures
    • /
    • v.35 no.2
    • /
    • pp.199-213
    • /
    • 2020
  • This paper proposes a Global-Local Analysis Method (GLAM) to assess the progressive collapse of steel framed structures under fire-induced column failure. GLAM obtains the overall structural response by combining dynamic analysis of the heated column (local) with static analysis of the overall structure (global). Test results of two steel frames which explicitly consider the dynamic effect during fire-induced column failure were employed to validate the proposed GLAM. Results show that GLAM gives reasonable predictions to the test frames in terms of both whether to collapse and the displacement verse temperature curves. Besides, several case studies of a two-dimensional (2D) steel frame and a three-dimensional (3D) steel frame with concrete slabs were conducted by using GLAM. Results show that GLAM gives the same collapse predictions to the studied cases with nonlinear dynamic analysis of the whole structure model. Compared with nonlinear dynamic analysis of the whole structure model, GLAM saves approximately 70% and 99% CPU time for the cases of 2D and 3D steel frame, respectively. Results also show that the load level of a structure has notable effects on the restraint condition of a heated column in the structure.

Bond performance between metakaolin-fly ash-based geopolymer concrete and steel I-section

  • Hang Sun;Juan Chen;Xianyue Hu
    • Steel and Composite Structures
    • /
    • v.51 no.5
    • /
    • pp.529-543
    • /
    • 2024
  • The bonding efficacy of steel I-section embedded in metakaolin-fly ash-based geopolymer concrete (MK-FA-GC) was investigated in this study. Push-out tests were conducted on nine column specimens to evaluate the influence of compressive strength of concrete, embedded length of steel I-section, thickness of concrete cover, and stirrup ratio on the bond performance. Failure patterns, load-slip relationships, bond strength, and distribution of bond stress among the specimens were analyzed. The characteristic bond strength of geopolymer concrete (GC) increased with higher compressive strength, longer embedded steel section length, thicker concrete cover, and larger stirrup ratio. Empirical formulas for bond strength at the loading end were derived based on experimental data and a bond-slip constructive model for steel-reinforced MK-FA-GC was proposed. The calculated bond-slip curves showed good agreement with experimental results. Furthermore, numerical simulations using ABAQUS software were performed on column specimens by incorporating the suggested bond-slip relationship into connector elements to simulate the interface behavior between MK-FA-GC and the steel section. The simulation results showed a good correlation with the experimental findings.

Flutter suppression of long-span suspension bridge with truss girder

  • Wang, Kai;Liao, Haili;Li, Mingshui
    • Wind and Structures
    • /
    • v.23 no.5
    • /
    • pp.405-420
    • /
    • 2016
  • Section model wind tunnel test is currently the main technique to investigate the flutter performance of long-span bridges. Further study about applying the wind tunnel test results to the aerodynamic optimization is still needed. Systematical parameters and test principle of the bridge section model are determined by using three long-span steel truss suspension bridges. The flutter critical wind at different attack angles is obtained through section model flutter test. Under the most unfavorable working condition, tests to investigate the effects that upper central stabilized plate, lower central stabilized plate and horizontal stabilized plate have on the flutter performance of the main beam were conducted. According to the test results, the optimal aerodynamic measure was chosen to meet the requirements of the bridge wind resistance in consideration of safety, economy and aesthetics. At last the credibility of the results is confirmed by full bridge aerodynamic elastic model test. That the flutter reduced wind speed of long-span steel truss suspension bridges stays approximately between 4 to 5 is concluded as a reference for the investigation of the flutter performance of future similar steel truss girder suspension bridges.

Fatigue performance of deepwater steel catenary riser considering nonlinear soil

  • Kim, Y.T.;Kim, D.K.;Choi, H.S.;Yu, S.Y.;Park, K.S.
    • Structural Engineering and Mechanics
    • /
    • v.61 no.6
    • /
    • pp.737-746
    • /
    • 2017
  • The touch down zone (TDZ) and top connection point of the vessel are most critical part of fatigue damage in the steel catenary riser (SCR). In general, the linear soil model has been used to evaluate fatigue performance of SCRs because it gives conservative results in the TDZ. However, the conservative linear soil model shows the limitation to accommodate real behavior in the TDZ as water depth is increased. Therefore, the riser behavior on soft clay seabed is investigated using a nonlinear soil model through time domain approach in this study. The numerical analysis considering various important parameters of the nonlinear soil model such as shear strength at mudline, shear strength gradient and suction resistance force is conducted to check the adoptability and applicability of nonlinear soil model for SCR design.

Spatial substructure hybrid simulation tests of high-strength steel composite Y-eccentrically braced frames

  • Li, Tengfei;Su, Mingzhou;Sui, Yan
    • Steel and Composite Structures
    • /
    • v.34 no.5
    • /
    • pp.715-732
    • /
    • 2020
  • High-strength steel composite Y-eccentrically braced frame (Y-HSS-EBF) is a novel structural system. In this study, the spatial substructure hybrid simulation test (SHST) method is used to further study the seismic performance of Y-HSS-EBF. Firstly, based on the cyclic loading tests of two single-story single-span Y-HSS-EBF planar specimens, a finite element model in OpenSees was verified to provide a reference for the numerical substructure analysis model for the later SHST. Then, the SHST was carried out on the OpenFresco test platform. A three-story spatial Y-HSS-EBF model was taken as the prototype, the top story was taken as the experimental substructure, and the remaining two stories were taken as the numerical substructure to be simulated in OpenSees. According to the test results, the validity of the SHST was verified, and the main seismic performance indexes of the SHST model were analyzed. The results show that, the SHST based on the OpenFresco platform has good stability and accuracy, and the results of the SHST agree well with the global numerical model of the structure. Under strong seismic action, the plastic deformation of Y-HSS-EBF mainly occurs in the shear link, and the beam, beam-columns and braces can basically remain in the elastic state, which is conducive to post-earthquake repair.

Tensile strength prediction of corroded steel plates by using machine learning approach

  • Karina, Cindy N.N.;Chun, Pang-jo;Okubo, Kazuaki
    • Steel and Composite Structures
    • /
    • v.24 no.5
    • /
    • pp.635-641
    • /
    • 2017
  • Safety service improvement and development of efficient maintenance strategies for corroded steel structures are undeniably essential. Therefore, understanding the influence of damage caused by corrosion on the remaining load-carrying capacities such as tensile strength is required. In this study, artificial neural network (ANN) approach is proposed in order to produce a simple, accurate, and inexpensive method developed by using tensile test results, material properties and finite element method (FEM) results to train the ANN model. Initially in reproducing corroded model process, FEM was used to obtain tensile strength of artificial corroded plates, for which surface is developed by a spatial autocorrelation model. By using the corroded surface data and material properties as input data, with tensile strength as the output data, the ANN model could be trained. The accuracy of the ANN result was then verified by using leave-one-out cross-validation (LOOCV). As a result, it was confirmed that the accuracy of the ANN approach and the final output equation was developed for predicting tensile strength without tensile test results and FEM in further work. Though previous studies have been conducted, the accuracy results are still lower than the proposed ANN approach. Hence, the proposed ANN model now enables us to have a simple, rapid, and inexpensive method to predict residual tensile strength more accurately due to corrosion in steel structures.

Modified cyclic steel law including bond-slip for analysis of RC structures with plain bars

  • Caprili, Silvia;Mattei, Francesca;Gigliotti, Rosario;Salvatore, Walter
    • Earthquakes and Structures
    • /
    • v.14 no.3
    • /
    • pp.187-201
    • /
    • 2018
  • The paper describes a modified cyclic bar model including bond-slip phenomena between steel reinforcing bars and surrounding concrete. The model is focused on plain bar and is useful, for its simplicity, for the seismic analyses of RC structures with plain bars and insufficient constructive details, such as in the case of '60s -'70s Mediterranean buildings. The model is based on an imposed exponential displacements field along the bar including both steel deformation and slip; through the adoption of equilibrium and compatibility equations a stress-slip law can be deducted and simply applied, with opportune operations, to RC numerical models. This study aims to update and complete the original monotonic model published by the authors, solving some numerical inconsistencies and, mostly, introducing the cyclic formulation. The first aim is achieved replacing the imposed linear displacement field along the bar with an exponential too, while the cyclic behaviour is described through a formulation based on the results of parametric analyses concerning a large range of steel and concrete properties and geometric configurations. Validations of the proposed model with experimental results available in the current literature confirm its accuracy and the reduced computational burden, highlighting its suitability in performing nonlinear analyses of RC structures.

A developed design optimization model for semi-rigid steel frames using teaching-learning-based optimization and genetic algorithms

  • Shallan, Osman;Maaly, Hassan M.;Hamdy, Osman
    • Structural Engineering and Mechanics
    • /
    • v.66 no.2
    • /
    • pp.173-183
    • /
    • 2018
  • This paper proposes a developed optimization model for steel frames with semi-rigid beam-to-column connections and fixed bases using teaching-learning-based optimization (TLBO) and genetic algorithm (GA) techniques. This method uses rotational deformations of frame members ends as an optimization variable to simultaneously obtain the optimum cross-sections and the most suitable beam-to-column connection type. The total cost of members plus connections cost of the frame are minimized. Frye and Morris (1975) polynomial model is used for modeling nonlinearity of semi-rigid connections, and the $P-{\Delta}$ effect and geometric nonlinearity are considered through a stepped analysis process. The stress and displacement constraints of AISC-LRFD (2016) specifications, along with size fitting constraints, are considered in the design procedure. The developed model is applied to three benchmark steel frames, and the results are compared with previous literature results. The comparisons show that developed model using both LTBO and GA achieves better results than previous approaches in the literature.

Analytical investigation of thin steel plate shear walls with screwed infill plate

  • Vatansever, Cuneyt;Berman, Jeffrey W.
    • Steel and Composite Structures
    • /
    • v.19 no.5
    • /
    • pp.1145-1165
    • /
    • 2015
  • A behavior model for screw connections is developed to provide a better representation of the nonlinear response of thin steel plate shear walls (TSPSWs) with infill plates attached to the boundary frame members via self-drilling screws. This analytical representation is based on the load-bearing deformation relationship between the infill plate and the screw threads. The model can be easily implemented in strip models of TSPSWs where the tension field action of the infill plates is represented by a series of parallel discrete tension-only strips. Previously reported experimental results from tests of two different TSPSWs are used to provide experimental validation of the modeling approach. The beam-to-column connection behavior was also included in the analyses using a four parameter rotational spring model that was calibrated to a test of an identical frame as used for the TSPSW specimens but without the infill plates. The complete TSPSW models consisting of strips representing the infill plates, zero length elements representing the load-bearing deformation response of the screw connection at each end of the strips and the four parameter spring model at each beam-to-column connection are shown to have good agreement with the experimental results. The resulting models should enable design and analysis of TSPSWs for both new construction and retrofit of existing buildings.