• Title/Summary/Keyword: steel model

Search Result 4,477, Processing Time 0.029 seconds

The Comparison of Weldability in Hybrid & Laser Welded Ship Structure A-grade Steel (조선용 A-grade 강재에 대한 하이브리드 및 레이저 용접부의 용접성 비교)

  • Oh, Chong-In;Park, Ho-Kyung;Jeong, Eun-Young;Rajesh, S.R;Bang, Han-Sur
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.193-196
    • /
    • 2006
  • Recently many research are going on in the field of application of Laser and Laser-Arc hybrid welding for superstructures such as ship-structures, transport vehicles etc. Therefore in this study an optimized welding condition and numerical simulation for hybrid welding by using previous numerical analysis which is used to calculate the heat source for Laser and Laser-Arc hybrid welding has been analyzed. For this purpose, fundamental welding phenomena of hybrid process(Laser+MIG) are determined based on the experiments. In order to calculate temperature and residual stress distribution in Laser and Laser-Arc hybrid welds, finite element heat source model is developed on the basis of experiment results and characteristics of temperature and residual stress distribution in Laser and Laser-Arc hybrid welds are understood from the result of simulation and found comparable to the experimental values.

  • PDF

Fiber reinforced concrete L-beams under combined loading

  • Ibraheem, Omer Farouk;Abu Bakar, B.H.;Johari, I.
    • Computers and Concrete
    • /
    • v.14 no.1
    • /
    • pp.1-18
    • /
    • 2014
  • The addition of steel fibers in concrete mixture is recognized as a non-conventional mass reinforcement scheme that improves the torsional, flexural, and shear behavior of structural members. However, the analysis of fiber reinforced concrete beams under combined torsion, bending, and shear is limited because of the complicated nature of the problem. Therefore, nonlinear 3D finite element analysis was conducted using the "ANSYS CivilFEM" program to investigate the behavior of fiber reinforced concrete L-beams. These beams were tested at different reinforcement schemes and loading conditions. The reinforcement case parameters were set as follows: reinforced with longitudinal reinforcement only and reinforced with steel bars and stirrups. All beams were tested under two different combined loading conditions, namely, torsion-to-shear ratio (T/V) = 545 mm (high eccentricity) and T/V = 145 mm (low eccentricity). Eight intermediate L-beams were constructed and tested in a laboratory under combined torsion, bending, and shear to validate the finite element model. Comparisons with the experimental data reveal that the program can accurately predict the behavior of L-beams under different reinforcement cases and combined loading ratios. The ANSYS model accurately predicted the loads and deformations for various types of reinforcements in L-beams and captured the concrete strains of these beams.

Seismic responses of asymmetric steel structures isolated with the TCFP subjected to mathematical near-fault pulse models

  • Tajammolian, H.;Khoshnoudian, F.;Bokaeian, V.
    • Smart Structures and Systems
    • /
    • v.18 no.5
    • /
    • pp.931-953
    • /
    • 2016
  • In this paper, the effects of mass eccentricity of superstructure as well as stiffness eccentricity of isolators on the amplification of seismic responses of base-isolated structures are investigated by using mathematical near-fault pulse models. Superstructures with 3, 6 and 9 stories and aspect ratios equal to 1, 2 and 3 are mounted on a reasonable variety of Triple Concave Friction Pendulum (TCFP) bearings considering different period and damping ratio. Three-dimensional linear superstructure mounted on nonlinear isolators are subjected to simplified pulses including fling step and forward directivity while various pulse period ($T_p$) and Peak Ground Velocity (PGV) amounts as two crucial parameters of these pulses are scrutinized. Maximum isolator displacement and base shear as well as peak superstructure acceleration and drift are selected as the main engineering demand parameters. The results indicate that the torsional intensification of different demand parameters caused by superstructure mass eccentricity is more significant than isolator stiffness eccentricity. The torsion due to mass eccentricity has intensified the base shear of asymmetric 6-story model 2.55 times comparing to symmetric one. In similar circumstances, the isolator displacement and roof acceleration are increased 49 and 116 percent respectively in the presence of mass eccentricity. Furthermore, it is demonstrated that torsional effects of mass eccentricity can force the drift to reach the allowable limit of ASCE 7 standard in the presence of forward directivity pulses.

Experimental and FE simulations of ferrocement columns incorporating composite materials

  • Shaheen, Yousry B.I.;Mahmoud, Ashraf M.;Refat, Hala M.
    • Structural Engineering and Mechanics
    • /
    • v.64 no.2
    • /
    • pp.155-171
    • /
    • 2017
  • This paper presents a proposed method for producing reinforced composite concrete columns reinforced with various types of metallic and non metallic mesh reinforcement. The experimental program includes casting and testing of twelve square columns having the dimensions of $100mm{\times}100mm{\times}1000mm$ under concentric compression loadings. The test samples comprise all designation specimens to make comparative study between conventionally reinforced concrete column and concrete columns reinforced with welded steel mesh, expanded steel mesh, fiber glass mesh and tensar mesh. The main variables are the type of innovative reinforcing materials, metallic or non metallic, the number of layers and volume fraction of reinforcement. The main objective is to evaluate the effectiveness of employing the new innovative materials in reinforcing the composite concrete columns. The results of an experimental investigation to examine the effectiveness of these produced columns are reported and discussed including strength, deformation, cracking, and ductility properties. Non-linear finite element analysis; (NLFEA) was carried out to simulate the behavior of the reinforced concrete composite columns. The numerical model could agree the behavior level of the test results. ANSYS-10.0 Software. Also, parametric study is presented to look at the variables that can mainly affect the mechanical behaviors of the model such as the change of column dimensions. The results proved that new reinforced concrete columns can be developed with high strength, crack resistance, and high ductility properties using the innovative composite materials.

Fiber reinforced concrete corbels: Modeling shear strength via symbolic regression

  • Kurtoglu, Ahmet E;Gulsan, Mehmet E;Abdi, Hussein A;Kamil, Mohammed A;Cevik, Abdulkadir
    • Computers and Concrete
    • /
    • v.20 no.1
    • /
    • pp.65-75
    • /
    • 2017
  • In this study, a novel application of symbolic regression (SR) is employed for the prediction of ultimate shear strength of steel fiber reinforced (SFRC) and glass fiber reinforced (GFRC) corbels without stirrups, for the first time in the literature. A database is created using the test results (42 tests) conducted by the authors of current paper as well as the previous studies available in the literature. A symbolic regression based empirical formulation is proposed using this database. The formulation is unique in a way that it has the capability to predict the shear strength of both SFRC and GFRC corbels. The performance of proposed model is tested against randomly selected testing set. Additionally, a parametric study with a wide range of variables is carried out to test the effect of each parameter on the shear strength. The results confirm the high prediction capacity of proposed model.

Effect of bond and bidirectional bolting on hysteretic performance of through bolt CFST connections

  • Ajith, M.S.;Beena, K.P.;Sheela, S.
    • Earthquakes and Structures
    • /
    • v.19 no.5
    • /
    • pp.315-329
    • /
    • 2020
  • Through bolt connections in Concrete Filled Steel Tubes (CFSTs) has been proved to be good in terms of seismic performance and constructability. Stiffened extended end plate connection with full through type bolt helps to avoid field weld altogether, and hence to improve the quality of joints. An experimental study was conducted on the hysteretic performance of square interior beam-column connections using flat extended end plates with through bolt. The study focuses on the effect of the bond between the tie rod and the core concrete on the cyclic performance of the joint. The study also quantifies how much the interior joint is getting strengthened due to the confinement effect induced by bi-directional bolting, which is widely used in 3D moment resisting frames. For a better understanding of the mechanism and for the prediction of shear capacity of the panel zone, a mathematical model was generated. The various parameters included in the model are the influence of axial load, amount of prestress induced by bolt tightening, anchorage, and the concrete strut action. The study investigates the strength, stiffness, ductility, and energy dissipation characteristics. The results indicate that the seismic resistance is at par with American Institute of Steel Construction (AISC) seismic recommendations. The bidirectional bolting and bond effect have got remarkable influence on the performance of joints.

A study on Accelerated Life Prediction of Gas Welded joint of STS301L (1. Plug and Ring type) (STS301L 가스용접이음재의 가속수명에측에 관한 연구 (1. Plug and Ring type))

  • Baek, Seung-Yeb;Bae, Dong-Ho
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1355-1360
    • /
    • 2008
  • Stainless steel sheets are widely used as the structure material for the railroad cars and the commercial vehicles. These kinds structures used stainless steel sheets are commonly fabricated by using the gas welding. Gas welding is very important and useful technology in fabrication of an railroad car and vehicles structure. However fatigue strength of the gas welded joints is considerably lower than parent metal due to stress concentration at the weldment, fatigue strength evaluation of gas welded joints are very important to evaluate the reliability and durability of railroad cars and to establish a criterion of long life fatigue design. In this paper, ${\Delta}P-N_f$ curve were obtained by fatigue tests. Using these results, the accelerated life test (ALT) is conducted. From the experimental results, an acceleration model is derived and acceleration factors are estimated. So it is intended to obtain the useful information for the fatigue lifetime of plug and ring gas welded joints and data analysis by statistic reliability method, to save time and cost, and to develop optimum accelerated life prediction plans.

  • PDF

Performance of composite frame consisting of steel beams and concrete filled tubes under fire loading

  • Shariati, Mahdi;Grayeli, Mohammad;Shariati, Ali;Naghipour, Morteza
    • Steel and Composite Structures
    • /
    • v.36 no.5
    • /
    • pp.587-602
    • /
    • 2020
  • In recent years, the composite columns have been widely used in the structures. These columns are mainly used to construct the structures with a large span and high floor height. Concrete filled tubes (CFTs) are a type of composite column, which are popular nowadays due to their numerous benefits. The purpose of this study is to investigate such frames at elevated temperatures. The method used in this research is based on section 2.2 of Eurocode 4. First, for the verification purpose, a comparison was made between the experimental results and the numerical model of the concrete filled tube. Then a composite frame was analyzed under fire temperature with different parameters. The results showed that the failure time decreased with increasing the friction of different models. Moreover, investigation of the concrete moisture content revealed that an increase in the concrete moisture content from 3% to 10% led to extended failure time for different models. For instance, in the second frame model, the failure time has increased up to 8%.

A Determination of Design Parameters for Application of Composite Coil Spring in a Passenger Vehicle (승용차 복합재 코일스프링 개발을 위한 설계변수들의 결정)

  • Oh, Sung-Ha;Choi, Bok-Lok
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.1
    • /
    • pp.77-83
    • /
    • 2013
  • This paper presents the feasibility on the application of composite coil spring, which has great interest in the automobile industry. In order to obtain much lighter weight of the composite spring, it will be necessary to optimize the design variables such as fiber angles and diameter of coil, etc. First of all, mechanical properties were measured to consider the effects of FVR and ply angles for carbon fiber composite material. And the shear modulus with respect to ply angles were derived based on twisting angles calculated by torsional beam model. Next we determined the design parameters of composite coil spring, which has equivalent spring rate to the steel coil spring. In order to assess the proposed method, finite element model of the composite spring was developed and analysed to obtain the spring constant. The results showed that static spring rate of the composite spring was in a good agreement with that of steel spring.

Analysis of Angular Deformation in Multi-pass Butt Joint Welding of Thick Plates with X-shape Grooves using the Finite Element Method (X형 개선을 가진 후판 맞대기 용접에 있어서 유한요소법을 이용한 각변형 해석)

  • Yang, Young-Soo;Bae, Kang-Yul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.4
    • /
    • pp.169-176
    • /
    • 2018
  • Removal of angular deformation induced during the welding of butt joints in thick steel plates needs expert skill and is costly. To reduce deformation, proper joint designs are studied with a prediction of deformation prior to welding. However, as the thickness of a plate increases, a predictive analysis of the welding process is more difficult, especially if there is an increase in the number of welding passes in the joint. In this study, a numerical model with the finite element method (FEM) was developed to analyze the angular deformation in the multi-pass welding of butt joints of plates made of AH32 steel that had a thickness of up to 100 mm. A series of numerical simulations were then performed based on the developed model to predict the deformations for thick plates. With the results obtained by the analyses, this study suggested optimal X-shape grooves for the butt joints of thick plates to minimize the angular deformation. As the thickness of the plate increased to 100 mm, the ratio of the depth of the front-side groove to that of the back-side groove should be gradually increased to nearly 1:3.