• 제목/요약/키워드: steel construction

검색결과 4,374건 처리시간 0.037초

3D Infill을 활용한 PC 모듈러공법과 기존공법과의 시공프로세스 비교 연구 (A Study on the Comparison of the Construction Process between the PC Modular Construction Method Using 3D Infill and the Existing Construction Method)

  • 정준수;임석호;양현정
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 봄 학술논문 발표대회
    • /
    • pp.87-88
    • /
    • 2023
  • In accordance with changes in the domestic construction environment, interest in off-site construction methods (factory-manufactured construction methods) including modular construction methods is rapidly increasing. Among various off-site (OSC) construction methods, the front runner is the steel-based box-type modular construction method. Compared to the existing wet construction method, the steel modular construction method is increasing in terms of securing economic feasibility by shortening the construction period and increasing the prefabrication rate. However, due to the recent rise in raw materials and a sharp rise in the exchange rate, the economic feasibility of the wet method is deteriorating compared to the wet method. Therefore, a hybrid between 9-Matrix-based OSC construction methods is considered as a solution, away from the steel-box type combination, and a comparative study of the construction process between each construction method is being conducted. It was analyzed that the PC modular construction method shortened the construction period by 9% compared to the existing steel modular construction method. On the other hand, when comparing the construction period of the Gayang-dong demonstration complex calculated assuming that all modules are applied, it is estimated that there will be a 12% reduction in construction period compared to the steel modular method and a whopping 43% compared to the RC method.

  • PDF

조경시설공사의 시공품질 분석을 통한 품질관리항목의 중요도 연구 (A Study on the Relative Importance of Quality Management Items through the Defect Analysis in the Landscape Construction Process)

  • 이상석;최기수
    • 한국조경학회지
    • /
    • 제25권3호
    • /
    • pp.1-11
    • /
    • 1997
  • This study aims to estimate the relative importance of quality management items through the defect analysis in the landscape construction process. The RIQMI are decided by the defect coefficient and it's cause weight. The defect items in the landscape construction process were classified by 56 items based on the classification form of '96 landscape architectural construction standard and the cause pattern were categorized 4 types as design, material, construction, and environment factors. To analyze the defect coefficient and the aucse weight by defect, the researcher surveyed the questionnaires on the 103 engineers and the 31 experts on the landscape architectural construction. The result of this study are as follows. The relative importance by facilities pattern turn out to be much higher construction, material fator than design. environment factor in wood facilities, paving facilities, and steel facilities, the RIQMI is very high in timber crack, timber vending, faulty of timber against decay, welding faulty of steel facilities in material factor, and timber crack, faulty of timber against decay, finish faulty of steel facilities, welding faulty of steel facilities in construction factor.

  • PDF

대형 UTM을 이용한 강관합성 말뚝재료의 강도 특성 평가 (Evaluation on compressive strength of steel-concrete composite piles using a large scaled UTM(Universal Test Machine))

  • 이주형;권형민;박재현;곽기석;정문경
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 춘계 학술발표회
    • /
    • pp.482-489
    • /
    • 2009
  • Various model piles with different sections such as reinforced concrete, steel, steel-concrete composite without rebar and steel-concrete composite with rebar were made, and vertical load test was conducted using a large scaled UTM(Universal Test Machine) to evaluate Young's modulus and ultimate load of the model piles. Based on the tests, ultimate load of steel-concrete composite pile is 31% greater than the sum of it of reinforced concrete pile and it of steel pile. This is caused that ultimate load and Young's modulus of inner concrete increase due to confining effect by outer steel casing. Variation of ultimate load is also insignificant depending on the ratio of length to diameter(L/D), therefore bucking has not an effect on change of ultimate load in case of the L/D below 10.

  • PDF

강박스교량 공사비 특성 분석 (Analysis on Characteristic of Construction Cost for Steel Box Bridge)

  • 선창원;경갑수;강신화;권순철
    • 한국강구조학회 논문집
    • /
    • 제21권1호
    • /
    • pp.1-14
    • /
    • 2009
  • 설계단계별 적정공사비를 산출하는 것은 건설공사의 효율적인 예산확보 및 집행에 있어서 중요한 이슈의 하나이다. 이러한 것을 고려하여 본 연구에서는 강교량 공사비 산출을 위한 기본자료 구축의 일환으로 기존 설계된 강교량의 수량 및 단가산출서, 내역 산출서 등의 설계내역서를 분석하여 강박스 교량의 기본적인 제원 특성 등을 조사하고자 한다. 또한 강박스교량의 예정가격 공사비 특성과 교량 공사 공종별과의 상관관계를 평가하는 것에 의해 향후 강교량 기획단계의 적정공사비 산정을 위한 기초자료를 제공하여 효율적이고 타당한 적정공사비 산정모델 구축을 위한 기본 자료를 제시하고자 한다. 이상의 연구 결과 전체 공사비에서 각 공종이 차지하는 비율 및 단위 공사비를 산출하였으며, 강교량 공사비의 영향요인을 도출하였다.

Construction sequence modelling of continuous steel-concrete composite bridge decks

  • Dezi, Luigino;Gara, Fabrizio;Leoni, Graziano
    • Steel and Composite Structures
    • /
    • 제6권2호
    • /
    • pp.123-138
    • /
    • 2006
  • This paper proposes a model for the analysis of the construction sequences of steel-concrete composite decks in which the slab is cast-in-situ for segments. The model accounts for early age shrinkage, such as thermal and endogenous shrinkage, drying shrinkage, tensile creep effects and the complex sequences of loading due to pouring of the different slab segments. The evolution of the structure is caught by suitably defining the constitutive relationships of the concrete and the steel reinforcements. The numerical solution is obtained by means of a step-by-step procedure and the finite element method. The proposed model is then applied to a composite deck in order to show its potential.

각형강관을 이용한 슬림플로어 시스템의 층고절감효과 비교 (Comparing floor height reduction effect of slim floor system with square steel pipe)

  • 조윤진;임홍철;김대유;류승일;김도균
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2017년도 춘계 학술논문 발표대회
    • /
    • pp.56-57
    • /
    • 2017
  • In recent years, new construction methods have been required to reduce the construction cost and increase the available area in an environment where construction work is frequently performed in a narrow urban area like Korea. As a result of these studies, slim floor composite beam has been suggested. Slim floor composite beam can reduce required depth because web of steel beam is embedded in the slab, so it is effective to reduce floor height and increase the available area. The purpose of this study is the floor height reduction evaluation by comparing system consisting of reinforced concrete, steel, and slim floor using square-shape steel pipe. After doing structural design for a typical plan, checked effectiveness by comparing each design plan. It is proven that slim floor composite beam can reduce required depth effectively comparing required materials of other system.

  • PDF

건축물 시공 자동화 시스템을 위한 자립형 철골 접합부의 시공성 분석 (Constructibility Analysis of Self-supported Steel Joint for Automated Construction System)

  • 김동건;양성우;김태훈;신윤석;조훈희;강경인
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2009년도 춘계 학술논문 발표대회 학계
    • /
    • pp.1-4
    • /
    • 2009
  • Construction automation and robotics are being introduced as an efficient alternative to overcome troubles caused by lack of skilled labors. To accomplish effective automated construction system, design for automation(DFA) should be performed in parallel with the development of core technologies such as control and sensing of robots. In Korea, the development of robotic crane-based construction automation(RCA) system is progressing, and the research group has recently developed newly designed steel joint to improve the efficiency of the system. However, performance of the new system should be examined prior to its application on construction sites. Therefore, This study analyzed performance of the new steel frame focused on its constructibility by carrying out mock-up test. As a result, the steel frame satisfied the standards of allowable stress and deflection. It also enables to reduce the time for installation.

  • PDF

Numerical and analytical study on initial stiffness of corrugated steel plate shear walls in modular construction

  • Deng, En-Feng;Zong, Liang;Ding, Yang
    • Steel and Composite Structures
    • /
    • 제32권3호
    • /
    • pp.347-359
    • /
    • 2019
  • Modular construction has been increasingly used for mid-to-high rise buildings attributable to the high construction speed, improved quality and low environmental pollution. The individual and repetitive room-sized module unit is usually fully finished in the factory and installed on-site to constitute an integrated construction. However, there is a lack of design guidance on modular structures. This paper mainly focuses on the evaluation of the initial stiffness of corrugated steel plate shears walls (CSPSWs) in container-like modular construction. A finite element model was firstly developed and verified against the existing cyclic tests. The theoretical formulas predicting the initial stiffness of CSPSWs were then derived. The accuracy of the theoretical formulas was verified by the related numerical and test results. Furthermore, parametric analysis was conducted and the influence of the geometrical parameters on the initial stiffness of CSPSWs was discussed and evaluated in detail. The present study provides practical design formulas and recommendations for CSPSWs in modular construction, which are useful to broaden the application of modular construction in high-rise buildings and seismic area.

강섬유 보강 시멘트 복합체의 시공성 향상에 관한 연구 (A Study on the Improvement of Construction Performance of Steel Fiber Reinforced Cementitious Composites)

  • 고경택;박정준;김방욱;이종석;김성욱;이장화
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.749-754
    • /
    • 2002
  • In this study, it is investigate to influence on tile dispersion of fiber and the flowability of matrix of type and amount of superplasticizer, velocity agent, mineral admixture and steel fiber to improve for construction performance of steel fiber reinforced cementitious composites. As for the test results, it was found that the dispersion of fiber and the flowability of matrix in steel fiber reinforced cementitious composites can improve by using of properly amount and combination of superplasticizer, velocity agent, mineral admixture. Furthermore, It show that the aspect ratio of steel fiber affect the construction performance of fiber reinforced cementitious composites, and the improvement for construction performance is the more effective the smaller aspect ration of steel fiber.

  • PDF

Simulating the construction process of steel-concrete composite bridges

  • Wu, Jie;Frangopol, Dan M.;Soliman, Mohamed
    • Steel and Composite Structures
    • /
    • 제18권5호
    • /
    • pp.1239-1258
    • /
    • 2015
  • This paper presents a master-slave constraint method, which may substitute the conventional transformed-section method, to account for the changes in cross-sectional properties of composite members during construction and to investigate the time-dependent performance of steel-concrete composite bridges. The time-dependent effects caused by creep and shrinkage of concrete are considered by combining the age-adjusted effective modulus method and finite element analysis. An efficient computational tool which runs in AutoCAD environment is developed to simulate the construction process of steel-concrete composite bridges. The major highlight of the developed tool consists in a very convenient and user-friendly interface integrated in AutoCAD environment. The accuracy of the proposed method is verified by comparing its results with those provided by using the transformed-section method. Furthermore, the computational efficiency of the developed tool is demonstrated by applying it to a steel-concrete composite bridge.