• Title/Summary/Keyword: steel columns

Search Result 1,398, Processing Time 0.024 seconds

Behavior of polygonal concrete-filled steel tubular stub columns under axial loading

  • Zhang, Tao;Ding, Fa-xing;Wang, Liping;Liu, Xue-mei;Jiang, Guo-shuai
    • Steel and Composite Structures
    • /
    • v.28 no.5
    • /
    • pp.573-588
    • /
    • 2018
  • The objective of this paper is to investigate the mechanical performances of polygonal concrete-filled circular steel tubular (CFT) stub columns under axial loading through combined experimental and numerical study. A total of 32 specimens were designed to investigate the effect of the concrete strength and steel ratio on the compressive behavior of polygonal CFT stub columns. The ultimate bearing capacity, ductility and confinement effect were analyzed based on the experimental results and the failure modes were discussed in detail. Besides, ABAQUS was adopted to establish the three dimensional FE model. The composite action between the core concrete and steel tube was further discussed and clarified. It was found that the behavior of CFT stub column changes with the change of the cross-section, and the change is continuous. Finally, based on both experimental and numerical results, a unified formula was developed to estimate the ultimate bearing capacity of polygonal CFT stub columns according to the superposition principle with rational simplification. The predicted results showed satisfactory agreement with both experimental and FE results.

Simplified stress-strain model for circular steel tube confined UHPC and UHPFRC columns

  • Le, An H.;Ekkehard, Fehling;Thai, Duc-Kien;Nguyen, Chau V.
    • Steel and Composite Structures
    • /
    • v.29 no.1
    • /
    • pp.125-138
    • /
    • 2018
  • The research on the confinement behavior of ultra high performance concrete without and with the use of steel fibers (UHPC and UHPFRC) has been extremely limited. In previous studies, authors experimentally investigated the axially compressive behavior of circular steel tube confined concrete (STCC) short and intermediate columns with the employment of UHPC and UHPFRC. Under loading on only the concrete core, the confinement effect induced by the steel tube was shown to significantly enhance the utimate stress and its corresponding strain of the concrete core. Therefore, this paper develops a simplified stress - strain model for circular STCC columns using UHPC and UHPFRC with compressive strength ranging between 150 MPa and 200 MPa. Based on the regression analysis of previous test results, formulae for predicting peak confined stress and its corresponding strain are proposed. These proposed formulae are subsequently compared against some previous empirical formulae available in the literature to assess their accuracy. Finally, the simplified stress - strain model is verified by comparison with the test results.

Compressive behaviour of circular steel tube-confined concrete stub columns with active and passive confinement

  • Nematzadeh, Mahdi;Hajirasouliha, Iman;Haghinejad, Akbar;Naghipour, Morteza
    • Steel and Composite Structures
    • /
    • v.24 no.3
    • /
    • pp.323-337
    • /
    • 2017
  • This paper presents the results of a comprehensive experimental investigation on the compressive behaviour of steel tube-confined concrete (STCC) stub columns with active and passive confinement. To create active confinement in STCC columns, an innovative technique is used in which steel tube is laterally pre-tensioned while the concrete core is simultaneously pre-compressed by applying pressure on fresh concrete. A total of 135 STCC specimens with active and passive confinement are tested under axial compression load and their compressive strength, ultimate strain capacity, axial and lateral stress-strain curves and failure mode are evaluated. The test variables include concrete compressive strength, outer diameter to wall thickness ratio of steel tube and prestressing level. It is shown that applying active confinement on STCC specimens can considerably improve their mechanical properties. However, applying higher prestressing levels and keeping the applied pressure for a long time do not considerably affect the mechanical properties of actively confined specimens. Based on the results of this study, new empirical equations are proposed to estimate the axial strength and ultimate strain capacity of STCC stub columns with active and passive confinement.

Cyclic test for solid steel reinforced concrete frames with special-shaped columns

  • Liu, Zu Q.;Xue, Jian Y.;Zhao, Hong T.;Gao, Liang
    • Earthquakes and Structures
    • /
    • v.7 no.3
    • /
    • pp.317-331
    • /
    • 2014
  • An experimental study was performed to investigate the seismic performance of solid steel reinforced concrete (SRC) frames with special-shaped columns that are composed of SRC special-shaped columns and reinforced concrete beams. For this purpose, two models of two-bay and three-story frame, including an edge frame and a middle frame, were designed and tested. The failure process and patterns were observed. The mechanical behaviors such as load-displacement hysteretic loops and skeleton curves, load bearing capacity, drift ratio, ductility, energy dissipation and stiffness degradation of test specimens were analyzed. Test results show that the failure mechanism of solid SRC frame with special-shaped columns is the beam-hinged mechanism, satisfying the seismic design principle of "strong column and weak beam". The hysteretic loops are plump, the ductility is good and the capacity of energy dissipation is strong, indicating that the solid SRC frame with special-shaped columns has excellent seismic performance, which is better than that of the lattice SRC frame with special-shaped columns. The ultimate elastic-plastic drift ratio is larger than the limit value specified by seismic code, showing the high capacity of collapse resistance. Compared with the edge frame, the middle frame has higher carrying capacity and stronger energy dissipation, but the ductility and speed of stiffness degradation are similar. All these can be helpful to the designation of solid SRC frame with special-shaped columns.

Evaluation of the Fire Resistance Performance of Interior Anchor Type CFT Columns through Loaded Heating Test

  • Kim, Sunhee;Yom, Kyongsoo;Choi, Sungmo
    • International Journal of High-Rise Buildings
    • /
    • v.2 no.1
    • /
    • pp.39-48
    • /
    • 2013
  • The fire resistance performance of generic CFT columns has been verified through various tests and analyses and the columns are widely used for fire resistance designs abroad. In this study, 3 groups of specimens (Non-fire protection, reinforcement with steel fiber and fire resistance paint) are suggested in order to evaluate the fire resistance performance of interior anchor type concrete-filled steel tubular columns having efficient cross-sections through loaded heating tests. Axial deformation-time relationship and in-plane temperatures are compared to evaluate the fire resistance performance of the specimens associated with variables. Suggested from the fact that the interior anchors exposed to fire exert influence on fire resistance performance due to thermal expansion, the reinforcements using steel fiber and fire resistance paint are verified to mitigate contraction and improve fire resistance performance. The result obtained from the tests of interior anchor type concrete-filled tubular columns is expected to be used for effective fire resistance design in association with previously conducted studies.

The Experimental Study on Axial Loaded Concrete Filled Steel Tube Confined by Carbon Fiber Sheet (탄소섬유쉬트로 구속된 콘크리트충전 각형강관기둥의 단조압축실험)

  • Park, Jai Woo;Hong, Young Kyun;Hong, Gi Soup;Lee, Seoung Hee;Choi, Sung Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.3
    • /
    • pp.311-320
    • /
    • 2009
  • This paper presents the experimental results of an experiment on the current rectangular CFT columns and rectangular CFT columns additionally confined by carbon fiber sheets(CFS) under axial loading. The main experimental parameters were the layer numbers of the CFS and the depth-to-thickness ratio. Nine specimens were prepared according to the experimental parameter plans, and axial compression tests were conducted. From the tests, the failure procedure, the load-axial deformation curve, the maximum axial strength, and the deformation capacity of the CFT columns and the confined CFT columns were compared. Finally, it was seen that the maximum axial strengths of the CFT increased more significantly than that of the current CFT columns because of delayed local buckling.

Behaviour of axially loaded RC columns strengthened by steel angles and strips

  • Adam, J.M.;Ivorra, S.;Gimenez, E.;Moragues, J.J.;Miguel, P.;Miragall, C.;Calderon, P.A.
    • Steel and Composite Structures
    • /
    • v.7 no.5
    • /
    • pp.405-419
    • /
    • 2007
  • This paper presents the development of some numerical models based on the results of laboratory tests performed on axially loaded RC columns strengthened with steel angles and strips. These numerical models consider the nonlinearity of the building materials and the effects of the contact interfaces between different materials. The results of the finite element models accurately describe the general behaviour of the strengthened columns. This study allows engineers to assess the relative importance of the mechanisms acting on the strengthened RC columns. Constructive recommendations are also provided in this paper.

Residual strength capacity of fire-exposed circular concrete-filled steel tube stub columns

  • Alhatmey, Ihssan A.;Ekmekyapar, Talha;Alrebeh, Salih K.
    • Advances in concrete construction
    • /
    • v.6 no.5
    • /
    • pp.485-507
    • /
    • 2018
  • Concrete-Filled Steel Tube (CFST) columns are an increasingly popular means to support great compressive loads in buildings. The residual strength capacity of CFST stub columns may be utilized to assess the potential damage caused by fire and calculate the structural fire protection for least post-fire repair. Ten specimens under room conditions and 10 specimens under fire exposure to the Eurocode smouldering slow-growth fire were tested to examine the effects of diameter to thickness D/t ratio and reinforcing bars on residual strength capacity, ductility and stiffness of CFST stub columns. On the other hand, in sixteen among the twenty specimens, three or six reinforcing bars were welded inside the steel tube. The longitudinal strains in the steel tube and load-displacement relationships were recorded throughout the subsequent compressive tests. Corresponding values of residual strength capacity calculated using AISC 360-10 and EC4 standards are presented for comparison purposes with the experimental results of this study. The test results showed that after exposure to $750^{\circ}C$, the residual strength capacity increased for all specimens, while the ductility and stiffness were slightly decreased. The comparison results showed that the predicted residual strength using EC4 were close to those obtained experimentally in this research.

Experimental study on circular CFST short columns with intermittently welded stiffeners

  • Thomas, Job;Sandeep, T.N.
    • Steel and Composite Structures
    • /
    • v.29 no.5
    • /
    • pp.659-667
    • /
    • 2018
  • This paper deals with the experimental study on strength the strength and deformation characteristics of short circular Concrete Filled Steel Tube (CFST) columns. Effect of vertical stiffeners on the behavior of the column is studied under axial compressive loading. Intermittently welded vertical stiffeners are used to strengthen the tubes. Stiffeners are attached to the inner surface of tube by welding through pre drilled holes on the tube. The variable of the study is the spacing of the weld between stiffeners and circular tube. A total of 5 specimens with different weld spacing (60 mm, 75 mm, 100 mm, 150 mm and 350 mm) were prepared and tested. Short CFST columns of height 350 mm, outer tube diameter of 165 mm and thickness of 4.5 mm were used in the study. Concrete of cube compressive strength $41N/mm^2$ and steel tubes with yield strength $310N/mm^2$ are adopted. The test results indicate that the strength and deformation of the circular CFST column is found to be significantly influenced by the weld spacing. The ultimate axial load carrying capacity was found to increase by 11% when the spacing of weld is reduced from 350 mm to 60 mm. The vertical stiffeners are found to effective in enhancing the initial stiffness and ductility of CFST columns. The prediction models were developed for strength and deformation of CFST columns. The prediction is found to be in good agreement with the corresponding test data.

Analytical behavior of built-up square concrete-filled steel tubular columns under combined preload and axial compression

  • Wang, Jian-Tao;Wang, Fa-Cheng
    • Steel and Composite Structures
    • /
    • v.38 no.6
    • /
    • pp.617-635
    • /
    • 2021
  • This paper numerically investigated the behavior of built-up square concrete-filled steel tubular (CFST) columns under combined preload and axial compression. The finite element (FE) models of target columns were verified in terms of failure mode, axial load-deformation curve and ultimate strength. A full-range analysis on the axial load-deformation response as well as the interaction behavior was conducted to reveal the composite mechanism. The parametric study was performed to investigate the influences of material strengths and geometric sizes. Subsequently, influence of construction preload on the full-range behavior and confinement effect was investigated. Numerical results indicate that the axial load-deformation curve can be divided into four working stages where the contact pressure of curling rib arc gradually disappears as the steel tube buckles; increasing width-to-thickness (B/t) ratio can enhance the strength enhancement index (e.g., an increment of 1.88% from B/t=40 to B/t=100), though ultimate strength and ductility are decreased; stiffener length and lip inclination angle display a slight influence on strength enhancement index and ductility; construction preload can degrade the plastic deformation capacity and postpone the origin appearance of contact pressure, thus making a decrease of 14.81%~27.23% in ductility. Finally, a revised equation for determining strain εscy corresponding to ultimate strength was proposed to evaluate the plastic deformation capacity of built-up square CFST columns.