• Title/Summary/Keyword: steel bracket

Search Result 118, Processing Time 0.025 seconds

Quantitative analysis of mutans streptococci adhesion to various orthodontic bracket materials in vivo (다양한 교정용 브라켓 원재료에 부착하는 mutans streptococci 양의 비교분석)

  • Yu, Jin-Kyoung;Ahn, Sug-Joon;Lee, Shin-Jae;Chang, Young-Il
    • The korean journal of orthodontics
    • /
    • v.39 no.2
    • /
    • pp.105-111
    • /
    • 2009
  • Objective: To estimate the effects of bracket material type on enamel decalcification during orthodontic treatment, this study analyzed the adhesion level of mutans streptococci (MS) to orthodontic bracket materials in vivo. Methods: Three different types of orthodontic bracket materials were used: stainless steel, monocrystalline sapphire, and polycrystalline alumina. A balanced complete block design was used to exclude the effect of positional variation of bracket materials in the oral cavity. Three types of plastic individual trays were made and one subject placed the tray in the mouth for 12 hours. Then, the attached bacteria were isolated and incubated on a mitis salivarius media containing bacitracin for 48 hours. Finally, the number of colony forming units of MS was counted. The experiments were independently performed 5 times with each of the 3 trays, resulting in a total of 15 times. Mixed model ANOVA was used to compare the adhesion amount of MS. Results: There was no difference in colony forming units among the bracket materials irrespective of jaw and tooth position. Conclusions: This study suggested that the result of quantitative analysis of MS adhesion to various orthodontic bracket materials in vivo may differ from that of the condition in vitro.

Changes in frictional resistance between stainless steel bracket and various orthodontic wires according to a change in moment (모멘트 변화에 따른 브라켓과 교정용 선재 사이의 마찰력 변화)

  • Jeong, Hye-Jin;Kim, Kwang-Won;Lim, Sung-Hoon
    • The korean journal of orthodontics
    • /
    • v.37 no.2 s.121
    • /
    • pp.137-149
    • /
    • 2007
  • Objective: The purpose of this study was to compare changes in frictional resistance between the bracket and wire under dry and wet conditions according to a change in moment. Methods: A stainless steel bracket of $0.022"{\times}0.028"$ slot, and $0.019"{\times}0.025"$ stainless steel, beta-titanium, and nickel-titanium wires were used. A 10 mm length lever was attached to the test (sliding) brackets to generate a moment. The experimental model was designed to allow tipping until contacts were established between the wire and the mesiodistal edges of the bracket slot. The moment was generated by suspending a 100 g or 200 g weight on the end of the lever. The moments applied were $1000g{\cdot}mm\;(100g{\times}10mm)\;and\;2000g{\cdot}mm\;(200g{\times}10mm)$. The test brackets were ligated with elastomeric ligature for a constant ligation force and the fixed brackets were ligated with stainless steel ligature. Brackets were moved along the wire by means of an universal testing machine, and maximum frictional resistances were recorded. Results: Stainless steel wire showed least frictional resistance and there was no significant difference between beta-titanium and nickel-titanium except at $2000g{\cdot}mm$ moment in wet conditions. Frictional resistance of all wires increased as the moment increased from $1000g{\cdot}mm\;to\;2000g{\cdot}mm$. Under wet conditions, the frictional resistance of stainless steel wires increased in both $1000g{\cdot}mm\;and\;2000g{\cdot}mm$ moment conditions, but frictional resistance of nickel-titanium and beta-titanium increased only in $2000g{\cdot}mm$ conditions. Conclusion: These results indicated that various conditions influence on frictional resistance. Therefore, laboratory studies of frictional resistance should simulate clinical situation.

A Study on Performance Evaluation of Masonry Thermal Bridge Blocking Brackets for Building Energy Efficiency (건축물에너지 효율을 위한 조적조 열교 차단 브라켓의 성능 평가 연구)

  • Kim, Woong-Hoi;Kim, Hyung-Kyu;Lee, Tae-Gyu;Lee, Jae-Hyun;Kim, Gyu-Yong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.175-176
    • /
    • 2023
  • The masonry structure is constructed by cement mortar binding material of brick objects and uses reinforced hardware(connected hardware or wall tie) together when building. However, over time, the corrosion of reinforced steel and the deterioration of joint mortar as well as bricks cause the risk of collapse. In particular, when the externally decorated brick wall is installed on the concrete girder for each floor, the angle bracket is not constructed or corroded, the full-layer weight load is applied to the wall of 0.5B, which is an example of full-scale or collapse. As a result of the evaluation, it was confirmed that the performance was improved compared to the existing bracket, and we plan to carry out a real-life test and long-term performance review of the building using the bracket in the future.

  • PDF

Development and Performance Evaluation of the Fourth Generation H-section Beam-to-Column Weak Axis Connection for Improving Workability (시공성 향상을 위한 제4세대 H형강 기둥-보 약축접합부의 개발 및 성능평가)

  • Kim, Pil-Jung;Boo, Yoon-Seob;Yang, Jae-Guen;Lee, Eun-Taik;Kim, Sang-Seup
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.3
    • /
    • pp.295-304
    • /
    • 2011
  • Bracket-type connection is often used for the weak-axis steel connection. In general, a beam-to-column connection for the bracket type is fabricated at the shop and abeam splice is additionally attached to the bracket in the site. Therefore, steel construction would not be competitive due to the increase of beam splice fabrication cost and overall construction period. This paper now proposes the new weak-axis connection types without a scallop, which has more definite strength flow, simple connection details, and better workability. From the series of experiments, the proposed connections showed better strength and ductility in comparison with standard details with scallop because the thickness of the welding plate for wide-flanged, beam-to-column connection can be easily adjusted.

Development of Beam-to-Column Connection Details with Horizontal Stiffeners in Weak Axis of H-shape Column (수평스티프너를 이용한 철골 기둥-보 약축접합부 상세 개발에 관한 연구)

  • Lee, Do Hyung;Ham, Jeong Tae;Kim, Sung Bae;Kim, Young Ho;Kim, Sang Seup
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.5 s.72
    • /
    • pp.641-652
    • /
    • 2004
  • The strong beam-to-column axis connections in steel structures have been studied for a long time to develop the strength and resistance of the connections. There have been very few studies, however, related to weak axis connections. Domestically, the bracket-type connection is commonly used in weak axis connections to elevate the efficiency of the constructions when the steel structures are constructed. The bracket-type connection detail has been applied moderately to weak axis connections. Therefore, the bracket-type connection in weak axis connections might be brittle and over-designed. The results of this study showed that the welding on the web of the column and the beam was unnecessary. In addition, this study confirmed that the new weak axis connection proposed in this study was superior to the previous connection in terms of strength and ductility.

An Experimental Study on the Behavior of Beam-to-Column Joints for Modular Steel Frame (해체.조립식 모듈러 철골조 기둥-보 접합부의 거동에 관한 실험적 연구)

  • Zheng, Sheng-Lin;Kang, Joo-Won;Park, Sung-Moo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.1
    • /
    • pp.89-97
    • /
    • 2008
  • The object of this paper is to evaluate on behavior the experimentally of beam-to-column joints for modular steel frame with the hollow structural steel section to LEB C-shape. Beam-to-column joints carried out test on the joint shape bracket-type and welded-type to consideration which the joints for modular steel frame was capacity, deformation and failure mode. Test of results, the beam-column joints decided to the lateral buckling strength in LEB C-shape regardless of joint-shape and joint failure. The strength & stiffness for joints increase as the bracket-thickness. The results from theory of lateral buckling are compared to the experimental results. The ratio of experimental results to theory value is $0.83{\sim}0.95$ in the case of bracket-type and welded-type of $0.87{\sim}0.9$, indicating an accurate and safe estimation.

  • PDF

Experimental, numerical and analytical studies on a novel external prestressing technique for concrete structural components

  • Lakshmanan, N.;Saibabu, S.;Murthy, A. Rama Chandra;Ganapathi, S. Chitra;Jayaraman, R.;Senthil, R.
    • Computers and Concrete
    • /
    • v.6 no.1
    • /
    • pp.41-57
    • /
    • 2009
  • This paper presents the details of a novel external prestressing technique for strengthening of concrete members. In the proposed technique, transfer of external force is in shear mode on the end block thus creating a complex stress distribution and the required transverse prestressing force is lesser compared to conventional techniques. Steel brackets are provided on either side of the end block for transferring external prestressing force and these are connected to the anchor blocks by expansion type anchor bolts. In order to validate the technique, an experimental investigation has been carried out on post-tensioned end blocks. Performance of the end blocks have been studied for design, cracking and ultimate loads. Slip and slope of steel bracket have been recorded at various stages during the experiment. Finite element analysis has been carried out by simulating the test conditions and the responses have been compared. From the analysis, it has been observed that the computed slope and slip of the steel bracket are in good agreement with the corresponding experimental observations. A simplified analytical model has been proposed to compute load-deformation of the loaded steel bracket with respect to the end block. Yield and ultimate loads have been arrived at based on force/moment equilibrium equations at critical sections. Deformation analysis has been carried out based on the assumption that the ratio of axial deformation to vertical deformation of anchor bolt would follow the same ratio at the corresponding forces such as yield and ultimate. It is observed that the computed forces, slip and slopes are in good agreement with the corresponding experimental observations.

An Effect of Repair & Retrofit of Stringer in Steel Plate Girder Railway Bridge with Fatigue Cracks (피로균열이 발생한 강판형 철도교 세로보의 보수보강효과)

  • Hong, Sung-Wook
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.1
    • /
    • pp.65-71
    • /
    • 2010
  • In this study, a series of finite element analysis using LUSAS were performed in order to assess the quantitative effects of repair and retrofit of stringer in steel plate girder railway bridge with fatigue cracks. And cutoff types of end part of upper flange were considered as right-angled type and round-angled type. Also, as a method of repair and retrofit of fatigue cracks in stringer, perforation of stop-hole and installation of bracket were considered. From the analysis result, it was possible to assess the fatigue safety and fatigue life of stringer with fatigue cracks, and to estimate the stress intensity factor range in cut-off part of stringer using J-integral method. Also, according to the method of perforation of stop-hole and installation of bracket, it was possible to calculate the crack propagation life at the cut-off part of stringer.

Applied machine vision technique in measuring the position of the hot steel strip (Hot strip 위치측정을 위한 Vision 기술 적용)

  • 노경숙;이동원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1072-1075
    • /
    • 1996
  • In hot rolling process at steel plant, cooling of the rolled strip at the exit of the rolling mill is one of the most important processes that would decide the quality of products. To guarantee the thermal equity over the strip, the device called an edge-masking unit is being used. That is installed between the strip and the sprayers to cover the side edge of the strip from spraying water. The accuracy of positioning the bracket is the key to this operation. A machine vision technique can be applied to measure the position of the side edges before an as-rolled strip enters into the cooling facility to rectify the error of preset position of the bracket. This paper shows the simulation result of applying the machine vision technique to measuring the position of a strip and suggests the solution for the target.

  • PDF

천마 연소관 브라켓 가공공정 개선

  • 김창식;최열경;양재일
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1993.10a
    • /
    • pp.27-33
    • /
    • 1993
  • 천마 연소관 및 Bracket는 고강도 특수강의 일종인 Maraging steel C-250 Grade로서 유동성형공정 (flow forming process: F/F) 및 용접공정을 거쳐 시효경화후의 경도(HRC 48-52)가 높아 절삭가공 및 Tapping에 어려움이 있다고 판단되어 브라켓 밀링가공(Tapping포함)을 시효경화공정 이전에 완성하는 것으로 공정 FLOW를 설정하였으나, 시효경화 시 유동성형공정 잔류응력 및 재질특성에 의한 수축, 변형 등으로 도면상 요구된 품질(형상 및 위치공차) 만족이 미흡하였을 뿐만 아니라 오히려 전체 공정 수만 증가하였음. 따라서 연소관 및 Bracket 완성가공을 시효경화 후에 실시하는 것으로 공정 개선 하고자 시험 작업한 결과, 선삭, 밀링작업등 다른 기계가공 공정의 문제점은 대부분 해결할 수 있었으나, Tapping공정만은 해결할 수 없어서 진정한 공정개선을 기할 수 없었음. 그러나, 제품의 품질 및 생산성을 고려 시효경화 후 Tapping 공정실시 필요성이 강력히 대두되어 Maraging steel 재질특성에 적합한 공구 및 작업조건을 검토, 설정 시험작업 함으로써 공정개선을 이룰 수 있었음.

  • PDF