• 제목/요약/키워드: steel bracket

검색결과 118건 처리시간 0.024초

페룰 가공용 초정밀 무심 연삭기의 유정압 안내면 및 이송계에 대한 구조 특성 해석 (Structural Characteristic Analysis on the Hydrostatic Guide Way and Feeding System of a High-Precision Centerless Grinder for Machining Ferrules)

  • 김석일;박천홍;조순주
    • 대한기계학회논문집A
    • /
    • 제28권7호
    • /
    • pp.896-903
    • /
    • 2004
  • This paper proposes the structural characteristic analysis and evaluation on the hydrostatic guide way and feeding system of a high-precision centerless grinder for machining ferrules. In order to realize the required accuracy of ferrules with sub-micron order, the axial stiffness and motion accuracy of feeding system have to become higher level than those of existing centerless grinders. Under these points of view, the physical prototype of feeding system composed of steel bed, hydrostatic guide way and ballscrew feeding mechanism is designed and manufactured for trial. Experimental results show that the axial and vertical stiffnesses of the physical prototype are very low as compared with those design values. In this paper, to reveal the cause of these stiffness difference, the structural deformations on the virtual prototype of feeding system are analyzed based on the finite element method under experimental conditions. The simulated results illustrate that the deformation of front ballscrew support-bearing bracket is the main cause of reduction in the axial stiffness of feeding system, and the deflection of bed structure and the bending deformation of hydrostatic guide rails are the main causes of reduction in the vertical stiffness of feeding system.

Numerical simulation of an external prestressing technique for prestressed concrete end block

  • Murthy, A. Rama Chandra;Ganapathi, S. Chitra;Saibabu, S.;Lakshmanan, N.;Jayaraman, R.;Senthil, R.
    • Structural Engineering and Mechanics
    • /
    • 제33권5호
    • /
    • pp.605-619
    • /
    • 2009
  • This paper presents the details of finite element (FE) modeling and analysis of an external prestressing technique to strengthen a prestressed concrete (PSC) end block. Various methods of external prestressing techniques have been discussed. In the proposed technique, transfer of external force is in shear mode on the end block creating a complex stress distribution. The proposed technique is useful when the ends of the PSC girders are not accessible. Finite element modeling issues have been outlined. Brief description about material nonlinearity including key aspects in modeling inelastic behaviour has been provided. Finite element (FE) modeling including material, loading has been explained in depth. FE analysis for linear and nonlinear static analysis has been conducted for varying external loadings. Various responses such as out-of-plane deformation and slip have been computed and compared with the corresponding experimental observations. From the study, it has been observed that the computed slope and slip of the steel bracket under external loading is in good agreement with the corresponding experimental observations.

Topology Optimization of a Lightweight Multi-material Cowl Cross Member Using Matrix Input with the Craig Bampton Nodal Method

  • Son, Dong il;So, Sangwoo;Choi, Dong hyuk;Kim, Daeil
    • Composites Research
    • /
    • 제32권5호
    • /
    • pp.243-248
    • /
    • 2019
  • As demand of light weight in the automotive industry has increased, the cowl cross member has been investigated using various methods to change the material. Conventionally, a cowl cross member has been made of steel and aluminum, but recently researchers tested multi-material such as aluminum and plastic. We studied a new model of the cowl cross member made of composite and non ferrous materials. For products with a high degree of freedom in design, generally, the method of topology optimization is advantageous and for the partial bracket part of the cowl cross member had a degree of freedom in the design, a topology optimization is appropriate. Considering the characteristics of the cowl cross members, we need research to minimize the weight while having the performance of noise, vibration and harshness(NVH). Taking the mounting status of the product into consideration, we used an assembly model to optimize the cowl cross member. But this method took too much time so we considered simple cowl cross member assemble conditions using the direct matrix input method(DMI) with the Craig-Bampton Nodal Method. This method is capable of considering the status of the assembly without assembling the model, which reduced the solving time and increased the accuracy comparison with a cowl cross member without DMI.

모듈러건축의 외장재 모듈정합설계 및 시공 (MC Design and Construction for Standardization of Exterior Materials of Modular Building)

  • 정준수;임석호;설욱제;백정훈
    • 대한건축학회논문집:계획계
    • /
    • 제34권6호
    • /
    • pp.31-37
    • /
    • 2018
  • With the progress of national policy researches on the modular construction, many studies have been conducted regarding the standardization of interior building materials. However, studies on the standardization of exterior building materials are still insufficient, and there are no dedicated exterior materials for modular construction. In this regard, this study investigated the necessary of standardization through the analysis on 7 kinds of exterior materials used in general buildings and exterior building materials applied to modular apartment houses in order to establish design criteria for the standardization of dedicated modular exterior materials. Based on the analysis results, assembly reference plane in conjunction with inside dimensions was set, and panelizing standardized in five parts was proposed to solve the problem of low exterior material standardization rate. It also proposed elastic gasket and steel bracket details that can compensate for the fabrication errors of unit boxes and construction errors in stacking.

카울크로스빔용 PA/GF복합재료의 기계적 특성 분석에 관한 연구 (A Study on Mechanical Characteristics Analysamsarais of PA/GF Composite Materials for Cowl Cross Beam)

  • 김환국;박종빈;이지훈;정헌규
    • 한국염색가공학회지
    • /
    • 제35권1호
    • /
    • pp.29-41
    • /
    • 2023
  • This study is about a hybrid lightweight cowl crossbeam structure with high rigidity and ability to absorb collision energy to support the cockpit module, which is an automobile interior part, and to absorb energy during a collision. It is a manufacturing process in which composite material bracket parts are inserted and injected into existing steel bars. When considering the mounting condition of a vehicle, the optimization of the fastening condition of the two parts and the mechanical properties of the composite material is acting as an important factor. Therefore, this study is about a composite material having a volume content of Polyamide(PA) and Glass Fiber used as a composite material for a composite material-metal hybrid cowl crossbeam. As a result of analyzing the physical properties of the PA/GF composite material, experimental data were obtained that can further enhance tensile strength and flexural strength by using PA66 rather than PA6 used as a base material for the composite material. And based on this, it contributed to securing the advantage of lightening by using high-stiffness composite material by improving the high disadvantage of the weight of the cowl crossbeam material, which was made only of existing metal materials.

원자현미경을 이용한 세라믹 브라켓 슬롯의 표면조도에 대한 연구 (Surface roughness analysis of ceramic bracket slots using atomic force microscope)

  • 박기호;윤현주;김수정;이기자;박헌국;박영국
    • 대한치과교정학회지
    • /
    • 제40권5호
    • /
    • pp.294-303
    • /
    • 2010
  • 교정용 브라켓과 강선 사이의 마찰저항력에 영향을 미치는 요소들 중 브라켓 슬롯의 표면조도에 대한 연구가 그동안 많이 시행되어 왔는데 기존 연구는 주로 주사전자현미경(SEM)이나 Prophylometer를 사용하여 이루어졌다. 이 연구는 원자현미경(AFM)을 사용하여 다섯 종류의 브라켓 슬롯의 표면조도를 정량적으로 측정하여 세라믹 브라켓이 스테인리스 스틸 브라켓보다 더 거칠고 다결정 알루미나 브라켓이 단결정 알루미나 브라켓보다 더 거친지 규명하는데 목적이 있다. 대조군인 스테인리스 스틸 브라켓($Succes^{(R)}$)과 두 종류의 단결정 알루미나(Inspire $Ice^{(R)}$, $Perfect^{(R)}$)와 두 종류의 다결정 알루미나(Crystalline $V^{(R)}$, $Invu^{(R)}$)를 슬라이드 글라스에 접착하고 슬롯을 노출시키기 위해 치과용 하이스피드 핸드피스와 샴퍼버를 이용해 윙을 연마하였다. 원자현미경 이미지는 Nanostation $II^{TM}$를 사용하여 관찰하였다. Sa, Sq, Sz 모두 $Invu^{(R)}$와 Inspire $Ice^{(R)}$는 대조군인 $Succes^{(R)}$와 유의미한 차이가 없었으며 $Perfect^{(R)}$와 Crystalline $V^{(R)}$$Succes^{(R)}$보다 컸다. $Perfect^{(R)}$와 Crystalline $V^{(R)}$ 사이에서는 Sa, Sq, Sz 모두 유의미한 차이가 없었으며 $Invu^{(R)}$와 Inspire $Ice^{(R)}$ 사이에서도 Sa, Sq, Sz 모두 유의미한 차이가 없었다. 따라서, 대조군인 $Succes^{(R)}$와 단결정 브라켓인 Inspire $Ice^{(R)}$, 다결정 브라켓인 $Invu^{(R)}$가 낮은 조도의 슬롯 표면을 가지고 다결정 브라켓인 Crystalline $V^{(R)}$와 단결정 브라켓인 $Perfect^{(R)}$가 거친 슬롯 표면을 가진 것으로 판단된다. 따라서, 유사한 재질의 브라켓이라도 제조사에 따라 다양한 슬롯 표면조도를 나타낸다고 할 수 있다.

Comparison of frictional forces between aesthetic orthodontic coated wires and self-ligation brackets

  • Kim, Yunmi;Cha, Jung-Yul;Hwang, Chung-Ju;Yu, Hyung Seog;Tahk, Seon Gun
    • 대한치과교정학회지
    • /
    • 제44권4호
    • /
    • pp.157-167
    • /
    • 2014
  • Objective: The purpose of this study was to evaluate the clinical efficacy of polymer- and rhodium-coated wires compared to uncoated wires by measuring the frictional forces using self-ligation brackets. Methods: 0.016-inch nickel titanium (NiTi) wires and $0.017{\times}0.025$-inch stainless steel (SS) wires were used, and the angulations between the brackets and wires were set to $0^{\circ}$, $5^{\circ}$, and $10^{\circ}$. Upper maxillary premolar brackets (Clippy-C$^{(R)}$) with a 0.022-inch slot were selected for the study and a tensile test was performed with a crosshead speed of 5 mm/min. The maximum static frictional forces and kinetic frictional forces were recorded and compared. Results: The maximum static frictional forces and the kinetic frictional forces of coated wires were equal to or higher than those of the uncoated wires (p < 0.05). The maximum static frictional forces of rhodium-coated wires were significantly higher than those of polymercoated wires when the angulations between the brackets and wires were set to (i) $5^{\circ}$ in the 0.016-inch NiTi wires and (ii) all angulations in the $0.017{\times}0.025$-inch SS wires (p < 0.05). The kinetic frictional forces of rhodium-coated wires were higher than those of polymer-coated wires, except when the angulations were set to $0^{\circ}$ in the 0.016-inch NiTi wires (p < 0.05). Conclusions: Although the frictional forces of the coated wires with regards to aesthetics were equal to or greater than those of the uncoated wires, a study under similar conditions regarding the oral cavity is needed in order to establish the clinical implications.

Mechanical behavior of the composite curved laminates in practical applications

  • Liu, Lonquan;Zhang, Junqi;Wang, Hai;Guan, Zhongwei
    • Steel and Composite Structures
    • /
    • 제19권5호
    • /
    • pp.1095-1113
    • /
    • 2015
  • In order to determine the mechanical behavior of the curved laminates in practical applications, three right-angled composite brackets with different lay-ups were investigated both experimentally and numerically. In the experimental, quasi-static tests on both unidirectional and multidirectional curved composite brackets were conducted to study the progressive failure and failure modes of the curved laminates. In the numerical modeling, three-dimensional finite element analysis was used to simulate the mechanical behavior of the laminates. Here, a strength-based failure criterion, namely the Ye criterion, was used to predict the delamination failure in the composite curved laminates. The mechanical responses of the laminate subjected to off-axis tensile loading were analyzed, which include the progressive failure, the failure locations, the load-displacement relationships, the load-strain relationships, and the stress distribution around the curved region of the angled bracket. Subsequently, the effects of stacking sequence and thickness on the load carrying capacity and the stiffness of the laminates were discussed in detail. Through the experimental observation and analysis, it was found that the failure mode of all the specimens is delamination, which is initiated abruptly and develops unstably on the symmetric plane, close to the inner surface, and about $29^{\circ}$ along the circumferential direction. It was also found that the stacking sequence and the thickness have significant influences on both the load carrying capacity and the stiffness of the laminates. However, the thickness effect is less than that on the curved aluminum plate.

A comparative study of metal artifacts from common metal orthodontic brackets in magnetic resonance imaging

  • Kajan, Zahra Dalili;Khademi, Jalil;Alizadeh, Ahmad;Hemmaty, Yasamin Babaei;Roushan, Zahra Atrkar
    • Imaging Science in Dentistry
    • /
    • 제45권3호
    • /
    • pp.159-168
    • /
    • 2015
  • Purpose: This study was performed to compare the metal artifacts from common metal orthodontic brackets in magnetic resonance imaging. Material and Methods: A dry mandible with 12 intact premolars was prepared, and was scanned ten times with various types of brackets: American, 3M, Dentaurum, and Masel orthodontic brackets were used, together with either stainless steel (SS) or nickel titanium (NiTi) wires. Subsequently, three different sequences of coronal and axial images were obtained: spin-echo $T_1$-weighted images, fast spin-echo $T_2$-weighted images, and fluid-attenuated inversion recovery images. In each sequence, the two sequential axial and coronal images with the largest signal-void area were selected. The largest diameters of the signal voids in the direction of the X-, Y-, and Z-axes were then measured twice. Finally, the mean linear values associated with different orthodontic brackets were analyzed using one-way analysis of variation, and the results were compared using the independent t-test to assess whether the use of SS or NiTi wires had a significant effect on the images. Results: Statistically significant differences were only observed along the Z-axis among the four different brands of orthodontic brackets with SS wires. A statistically significant difference was observed along all axes among the brackets with NiTi wires. A statistically significant difference was found only along the Z-axis between nickel-free and nickel-containing brackets. Conclusion: With respect to all axes, the 3M bracket was associated with smaller signal-void areas. Overall, the 3M and Dentaurum brackets with NiTi wires induced smaller artifacts along all axes than those with SS wires.

Multiloop edgewise arch wire의 부위별 하중변형률 (Regional load deflection rate of multiloop edgewise archwire)

  • 김병호;양원식
    • 대한치과교정학회지
    • /
    • 제29권6호
    • /
    • pp.673-688
    • /
    • 1999
  • 본 연구는 multiloop edgewise arch wire(MEAW)의 기계적 특성을 분석하기 위해, 1) 개별 브라켓간 부위에서의 MEAW의 하중변형률을 수종의 재질로 된 동일 규격의 교정용 호선과 비교하고, 2)개별 브라켓간 부위와 multi-L-loop 부위(측절치 브라켓의 원심연과 제2대구치 튜브의 근심연간의 거리)에서의 wire stiffness를 비교하며, 3)단일 L-loop와 multi-L-loop의 하중변형률에 대한 공학적 이론식을 유도하여 MEAW의 하중변형특성을 규명하고자 시행하였다. 5가지의 서로 다른 수평길이를 지닌 L-loop와 5개의 L-loop로 구성된 상하악의 multi-L-loop를 .$016\times.022$ inch의 stainless steel 강선으로 제작하였고, .$016\times.022$ inch의 Plain stainless steel, TML NiTi를 준비하였다. Instron model 4466 만능시험기에 50N 용량의 load cell을 부착하여 crosshead의 속도 1.0min/분, 브라켓간 부위의 시험시에는 최대변위량 1.0mm로 각 브라켓간격에서 측정하였고, multi-L-loop부위의 경우는 최대변위량 10mm, 42mm의 거리에서 측정하였다. 반복된 실험에 의해 발생할 수 있는 응력에 따른 물리적 성질 변화의 가능성을 배제하기 위해 각 조건마다 동일한 5개의 시편을 사용하였다. 측정된 하중변형률과 각 실험의 브라켓간격을 이용하여 각 브라켓부위에서의 L-loop의 wire stiffness number를 계산하였고 이를 multi-L-loop의 그것과 비교하였다. 5개의 loop로 구성된 multi-L-loop를 35개의 직선구간으로 나누어 각 구간의 에너지를 계산, 총합을 낸 후 가해진 외력으로 미분하여 하중변형률의 이론식을 유도하였으며, 이를 wire stiffness로 환산하여 단일 L-loop의 wire stiffness와 비교하였다. 그 결과는 다음과 같았다. 1) 각 브라켓 간격에서의 L-loop의 하중변형률은 평균적으로 stainless steel wire의 1/5.16, NiTi의 1/l.53, TMA의 1/2.47이었다. 2) multi-L-loop부위 에서의 MEAW의 wire stiffness는 개개 브라켓간 간격에서보다 평균 1.53배 더 높았고, 같은 부위에서의 NiTi보다 1.9배 더 높았다. 3) 유도된 하중변형률의 이론식에 따르면, 부위에 따라서 wire stiffness의 차이를 보이지 않는 직선 강선과는 달리, L-loop가 부여된 경우, 개별 L-loop의 ire stiffness는 전체 multi-L-loop의 wire stiffness보다 낮은 것으로 나타났다. 이상의 연구결과로 미루어 볼 때, MEAW는 개별적인 치아이동을 허용하면서, 가해진 교정력을 효과적으로 전체 치열로 전달할 수 있는 독특한 기계적 특성을 지니고 있는 것으로 생각된다.

  • PDF