• 제목/요약/키워드: steel bar joint

검색결과 74건 처리시간 0.032초

Prediction of steel corrosion in magnesium cement concrete based on two dimensional Copula function

  • Feng, Qiong;Qiao, Hongxia;Wang, Penghui;Gong, Wei
    • Computers and Concrete
    • /
    • 제21권2호
    • /
    • pp.181-187
    • /
    • 2018
  • In order to solve the life prediction problem of damaged coating steel bar in magnesium cement concrete, this study tries to establish the marginal distribution function by using the corrosion current density as a single degradation factor. Representing the degree of steel corrosion, the corrosion current density were tested in electrochemical workstation. Then based on the Copula function, the joint distribution function of the damaged coating was established. Therefore, it is indicated that the corrosion current density of the bare steel and coated steel bar can be used as the boundary element to establish the marginal distribution function. By using the Frank-Copula function of Copula Archimedean function family, the joint distribution function of the damaged coating steel bar was successfully established. Finally, the life of the damaged coating steel bar has been lost in 7320d. As a new method for the corrosion of steel bar under the multi-dimensional factors, the two-dimensional Copula function has certain practical significance by putting forward some new ideas.

Performance of headed FRP bar reinforced concrete Beam-Column Joint

  • Md. Muslim Ansari;Ajay Chourasia
    • Structural Engineering and Mechanics
    • /
    • 제90권1호
    • /
    • pp.71-81
    • /
    • 2024
  • Fiber Reinforced Polymer (FRP) bars have now been widely adopted as an alternative to traditional steel reinforcements in infrastructure and civil industries worldwide due variety of merits. This paper presents a numerical methodology to investigate FRP bar-reinforced beam-column joint behavior under quasi-static loading. The proposed numerical model is validated with test results considering load-deflection behavior, damage pattern at beam-column joint, and strain variation in reinforcements, wherein the results are in agreement. The numerical model is subsequently employed for parametric investigation to enhance the end-span beam-column joint performance using different joint reinforcement systems. To reduce the manufacturing issue of bend in the FRP bar, the headed FRP bar is employed in a beam-column joint, and performance was investigated at different column axial loads. Headed bar-reinforced beam-column joints show better performance as compared to beam-column joints having an L-bar in terms of concrete damage, load-carrying capacity, and joint shear strength. The applicability and efficiency of FRP bars at different story heights have also been investigated with varying column axial loads.

Experimental and analytical investigation on RC columns with distributed-steel bar

  • Ye, Mao;Pi, Yinpei;Ren, Min
    • Structural Engineering and Mechanics
    • /
    • 제47권6호
    • /
    • pp.741-756
    • /
    • 2013
  • Distributed-Steel Bar Reinforced Concrete (DSBRC) columns, a new and innovative construction technique for composite steel and concrete material which can alleviate the difficulty in the arrangement of the stirrup in the column, were studied experimentally and analytically in this paper. In addition, an ordinary steel Reinforced Concrete (SRC) column was also tested for comparison purpose. The specimens were subjected to quasi-static load reversals to model the earthquake effect. The experimental results including the hysteresis curve, resistance recession, skeleton curves and ductility ratio of columns were obtained, which showed well resistant-seismic behavior for DSBRC column. Meanwhile a numerical three-dimensional nonlinear finite-element (FE) analysis on its mechanical behavior was also carried out. The numerically analyzed results were then compared to the experimental results for validation. The parametric studies and investigation about the effects of several critical factors on the seismic behavior of the DSBRC column were also conducted, which include axial compression ratios, steel ratio, concrete strength and yield strength of steel bar.

Steel Bar를 이용한 리기다소나무 목재옹벽의 내력 평가 (Strength Evaluation of Pinus rigida Miller Wooden Retaining Wall Using Steel Bar)

  • 송요진;김건호;이동흡;황원중;홍순일
    • Journal of the Korean Wood Science and Technology
    • /
    • 제39권4호
    • /
    • pp.318-325
    • /
    • 2011
  • 현장에서 시공성이 용이함과 동시에 강도 성능이 뛰어난 steel bar를 이용한 리기다소나무 옹벽을 제작하여 내력평가를 실시하였다. Steel bar를 이용한 목재옹벽은 횡목 4단과 종목 3단으로 적층하였으며, 높이 770 mm, 길이 2,890 mm, 폭 782 mm로 제작하였다. 적층 방법은 18 mm로 선공한 최상단과 최하단 횡목을 Steel bar에 삽입하며, 깊이 64 mm, 폭 18 mm의 슬릿을 낸 나머지 횡목과 종목을 Steel bar에 끼워 넣어 적층하였다. 완성 된 옹벽은 수평 재하 시험을 통한 내력 평가와 화상처리(AlCON 3D OPA-PRO system)를 통하여 구조물의 변형을 측정하였다. Steel bar옹벽에는 1개의 긴 횡목과 2개의 종목으로 구성된 접합부(Type-A)와 반턱으로 이음된 2개의 짧은 횡목이 2개의 종목으로 구성된 접합부(Type-B)가 공존하며, 이들을 각각 3개씩 제작하여 접합부의 압축형 전단내력 평가를 실시하였다. Steel bar옹벽의 수평 재하 시험결과 정각재 목재옹벽(박준철 등, 2010)보다 1.6배 이상의 강도를 나타냈으며, 이때 목재와 접합부의 파단은 발생하지 않았다. 접합부의 압축형 전단 내력 실험결과 Type-A의 평균 최대 하중은 130.13 kN, Type-B의 평균 최대 하중은 130.6 kN으로 측정되었다. 실험 결과 Steel bar를 이용한 목재옹벽은 정각재 목재옹벽보다 시공성이 우수하며 강도 또한 높게 측정되었다.

콘크리트 포장용 고내구성 대체 다웰바의 실내공용성 평가 (Laboratory Performance Evaluation of Alternative Dowel Bar for Jointed Concrete Pavements)

  • 박성태;박준영;이재훈;김형배
    • 한국도로학회논문집
    • /
    • 제15권1호
    • /
    • pp.23-36
    • /
    • 2013
  • PURPOSES: The problem under this circumstance is that the erosion not only drops strength of the steel dowel bar but also comes with volume expansion of the steel dowel bar which can reduce load transferring efficiency of the steel dowel bar. To avoid this erosion problem, alternative dowers bars are developed. METHODS: In this study, the bearing stresses between the FRP tube dowel bar and concrete slab are calculated and compared with its allowable bearing stress to check its structural stability in the concrete pavement. These comparisons are conducted with several cross-sections of FRP tube dowel bars. Comprehensive laboratory tests including the shear load-deflection test on a full-scale specimen and the full-scale accelerated joint concrete pavement test are conducted and the results were compared with those from the steel dowel bar. RESULTS: In all cross-sections of FRP tube dowel bars, computed bearing stresses between the FRP tube dowel bar and concrete slab are less than their allowable stress levels. The pultrusion FRP-tube dowel bar show better performance on direct shear tests on full-scale specimen and static compression tests at full-scale concrete pavement joints than prepreg and filament-winding FRP-tube dowel bar. CONCLUSIONS: The FRP tube dowel bars as alternative dowel bar are invulnerable to erosion that may be caused by moisture from masonry joint or bottom of the pavement system. Also, the pultrusion FRP-tube dowel bar performed very well on the laboratory evaluation.

A NEW ON-LINE BAR JOINING TECHNOLOGY FOR ENDLESS HOT ROLLING

  • Lee, Jong-Sub;Kim, Ki-Chol;Won, Chun-Soo;Kenji Horii;Talmo Funamoto
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.282-288
    • /
    • 2002
  • A new on-line bar joining technology employing the concept of a solid-state joining has been developed for the endless rolling by POSCO, RIST and MHMM Inc.. In the process, the bars are partially descaled, partially overlapped, joined by shearing action and crops are finally removed. The feasibility of the developed process was evaluated in this study in terms of microstructures and mechanical properties of joints, and the response of the joint to rolling.

  • PDF

SC구조의 벽-바닥 접합부의 정착강도에 관한 연구 (A Study on the Bond Strength of Wall-Slab Joint of Steel Plate-Concrete Structures)

  • 최경민;김기성;김병국;김원기;최완철
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.321-324
    • /
    • 2006
  • An experimental study on the bond strength of wall-slab joint in SC(steel plate-concrete) structure was performed. Six-full scale specimens were tested. Specimens were constructed with key variables, such as, development length, location of the bar and quantity of the shear bar. The experimental results, show that as the development length and quantity of the shear bar increase, the bond strength increases. As the bars is located on the inside the stud bolt, the bond performance was highly increased compared to the bars located out of plane of the stud bolts.

  • PDF

Exposed Reinforced Concrete-Filled Steel Tubular (RCFST) column-base joint with high-strength

  • Mou, Ben;Wang, Zian;Qiao, Qiyun;Zhou, Wanqiu
    • Steel and Composite Structures
    • /
    • 제44권1호
    • /
    • pp.1-15
    • /
    • 2022
  • The weld quality has always been an important factor affecting the development of exposed CFT column-base joint. In this paper, a new type of exposed RCFST column-base joint is proposed, in which the high strength steel bars (USD 685) are set through the column and reinforced concrete foundation without any base plate and anchor bolts. Three specimens, the varying axial force ratio (0, 0.25 and 0.5), were tested under cyclic loadings. In addition, the bending moment capacity, energy dissipation capacity and deformation capacity of column-base joints were clarified. The experimental results indicated that the axial force ratio increases the stiffness and the bending moment and improves the energy dissipation capacity of column-base joints. This is because a large axial force can limit the slip between steel tubular and infilled concrete effectively. The specimens show stable hysteresis behavior.

일체식교대 강교량의 거더-교대 연결부 상세의 거동평가를 위한 실험적 연구 (Experimental Study for Performance Evaluation of Structural Details of Girder-Abutment Joint in Integral Abutment Steel Bridge)

  • 김상효;윤지현;최우진;김준환;안진희
    • 한국강구조학회 논문집
    • /
    • 제23권1호
    • /
    • pp.61-72
    • /
    • 2011
  • 본 연구에서는 일체식교대 강교량 거더-교대 연결부의 강체거동 및 균열저항성능의 향상을 위한 구조상세를 제시하고 그에 따른 연결부의 거동을 실험적으로 평가하였다. 거더-교대 연결부의 강체거동 및 균열저항성능을 향상시키기 위하여 전단연결재 및 tie bar를 적용한 연결부를 제시하였으며, 제시된 연결부 실험체와 기존 시공경험에 의해 설계된 연결부 실험체의 하중재하실험을 통하여 연결부의 성능 및 거동 특성을 검토하였다. 하중재하실험 결과, 모든 강 거더-교대 연결부 실험체들은 목표 설계하중 및 항복하중 이하에서 충분한 강성 및 균열저항 성능을 보여 강 거더-교대 연결부로 적용 가능하다. 하지만 실험체의 초기 강성, 균열의 진전형상 측면, 하중-변형률 측면에서 전단연결재와 tie bar가 적용된 강 거더-교대 연결부가 기존에 적용되어 왔던 강 거더-교대 연결부에 비하여 구조적으로 우수한 것으로 판단된다.

축력 및 전단력을 받는 RC 띠장-철골 보 접합부의 접합연결재 개발 (Development of Connection Details of RC Wale-Steel Beam Joint Subjected to Axile and Shear Load)

  • 김승훈
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제8권3호
    • /
    • pp.189-196
    • /
    • 2004
  • RC 띠장과 철골 보의 스터드 접합부는 RC 띠장의 춤이 제한되므로 스터드의 인장 및 전단성능이 저하되어 접합부의 휨 및 전단 저항성능이 감소될 수 있다. 특히 RC 띠장-철골 보 접합부는 토압 및 수압에 의한 압축력을 받는다. 본 논문은 압축력과 전단력을 받는 RC 띠장-철골 보 접합부를 대상으로 접합연결재를 개발하기 위한 실험적 연구를 나타내고 있다. 본 연구에서 개발된 접합연결재는 개방형 C형 철근, 폐쇄형 C형 철근, U형 철근 등이다. 실험을 통하여 개발된 접합연결재를 사용한 접합부의 전단성능이 스터드 접합부와 비교된다. 실험결과에서 개발된 접합연결재가 RC 띠장 철골보 접합부의 전단강도를 증가시키는데 매우 효과적임을 나타내었다.