• 제목/요약/키워드: steatosis model

검색결과 52건 처리시간 0.026초

The hepato-protective effect of eupatilin on an alcoholic liver disease model of rats

  • Lee, Hak Yeong;Nam, Yoonjin;Choi, Won Seok;Kim, Tae Wook;Lee, Jaehwi;Sohn, Uy Dong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제24권5호
    • /
    • pp.385-394
    • /
    • 2020
  • Eupatilin is known to possess anti-apoptotic, anti-oxidative, and anti-inflammatory properties. We report here that eupatilin has a protective effect on the ethanol-induced injury in rats. Sprague-Dawley rats were divided into 6 groups: control, vehicle, silymarin, eupatilin 10 mg/kg, eupatilin 30 mg/kg, and eupatilin 100 mg/kg. Plasma levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) were analyzed to determine the extent of liver damage. Total cholesterol (TC) and triglycerides (TG) were analyzed to determine the level of liver steatosis. Malondialdehyde level, superoxide dismutase (SOD) activity, and glutathione (GSH) level were analyzed to determine the extent of oxidative stress. Tumor necrosis factor (TNF)-α and interleukin (IL)-1β were quantified to verify the degree of inflammation. Based on our findings, chronic alcohol treatment significantly changed the serum indexes and liver indicators of the model rats, which were significantly improved by eupatilin treatment. Rats in the eupatilin-treatment group showed reduced levels of AST, ALT, TG, TC, TNF-α, and IL-1β, increased SOD activity and GSH levels, and improved overall physiology compared to the alcoholic liver disease model rats. H&E staining also verified the eupatilin-mediated improvement in liver injury. In conclusion, eupatilin inhibits alcohol-induced liver injury via its antioxidant and anti-inflammatory effects.

동과자 에탄올 추출물이 비알코올성 지방간 세포 모델에 미치는 효과 (Effects of Ethanol Extract of Benincasa Seeds on the Experimental Cellular Model of Nonalcoholic Fatty Liver Disease)

  • 최준용;김소연;권민정;김균하;주명수;한창우
    • 대한한방내과학회지
    • /
    • 제33권4호
    • /
    • pp.438-447
    • /
    • 2012
  • Objectives : In this study, we investigated the effect and the underlying mechanism of ethanol extract of Benincasa seeds on a cellular model of non-alcoholic fatty liver disease (NAFLD) established by treating HepG2 cells with palmitate. Methods : We evaluated ethanol extract of Benincasa seeds (EEBS) for its hepatic lipid-lowering potential in fatty acid overloaded HepG2 cells. After incubation in palmitate containing media with or without EEBS, intracellular neutral lipid accumulations were quantified by Nile red staining. We also investigated the effect of EEBS on lipogenesis and ${\beta}$-oxidation. $LXR{\alpha}$-dependent SREBP-1c activation, expression of lipogenic genes, and expression of ${\beta}$-oxidation related genes were determined with or without pretreatment of EEBS. Results : EEBS significantly attenuated palmitate-induced intracellular neutral lipid accumulation in HepG2 cells. EEBS suppressed fatty acid synthesis by inhibiting $LXR{\alpha}$-dependent SREBP-1c activation. EEBS also repressed SREBP-1c mediated induction of lipogenic genes, including ACC, FAS, and SCD-1. However, EEBS had no effect on ${\beta}$-oxidation related CPT-1 and $PPAR{\alpha}$ gene expression. Conclusions : Our results suggest that EEBS has an efficacy to decrease hepatic lipid accumulation, and this effect was mediated by inhibiting the $LXR{\alpha}$-SREBP-1c pathway that leads to expression of lipogenic genes and hepatic steatosis. Therefore, the Benincasa seeds may have a potential clinical application for treatment of this chronic liver disease.

비알코올성 지방간 세포 모델에 대한 택사, 산사, 구기자, 울금, 단삼, 인진의 효능 비교 (Comparison of the Therapeutic Efficacy of Rhizoma Alismatis, Fructus Crataegi, Fructus Lycii, Radix Curcumae, Radix Salviae Miltiorrhizae, Herba Artemisiae Scopariae on the Experimental Cellular Model of Nonalcoholic Fatty Liver Disease)

  • 한창우;주명수;이장훈
    • 대한한방내과학회지
    • /
    • 제33권4호
    • /
    • pp.533-542
    • /
    • 2012
  • Objectives : We try to compared the efficacy of six herbal medicines, Rhizoma Alismatis (RA), Fructus Crataegi (FC), Fructus Lycii (FL), Radix Curcumae (RC), Radix Salviae Miltiorrhizae (RSM), and Herba Artemisiae Scopariae (HAS), constituting KHchunggan-tang which was previously proven to be hepatoprotective on non-alcoholic fatty liver disease with combined properties of cellular steatosis, ROS production, and cytoprotection. Methods : HepG2 cells were pretreated with aqueous extracts of the six herb medicines at concentrations of 1, 10, 50 and 100 ${\mu}g/ml$ each, and treated with 0.5 mM palmitate consecutively. After 21 hrs, cell viability was assessed using MTT assay, and the percentage of cells with sub-G1 DNA content was measured using fluorescence-activated cell sorting after propidium iodide staining. Results : The first three extracts, RA, FC, and FL restored cell viability reduced by palmitate in MTT assay, and RA, FC, FL and RC inhibited palmitate-induced apoptosis in sub-G1 analysis. FL showed relatively weak potential only at tested maximal dose, and RA showed the greatest higher efficacy on this experimental cellular model of nonalcoholic fatty liver disease. Conclusions : According to this comparative experiment, Rhizoma Alismatis seems to have the most powerful potential among the six herbs constituting KHchunggan-tang, and consecutive further study seems to be required for more standardized and effective clinical application of KHchunggan-tang for treatment of non-alcoholic fatty liver disease.

고지방 식이로 유발된 고지혈증 동물 모델에서 구기자가미방(枸杞子加味方)의 효과 연구 (Study of the Effects of Gugijagami-bang in a Hyperlipidemic Animal Model Induced with a High-Fat Diet)

  • 안가영;조재준;신민구;전상윤
    • 대한한방내과학회지
    • /
    • 제35권4호
    • /
    • pp.505-518
    • /
    • 2014
  • Objectives: This study was undertaken to investigate the effects of Gugijagami-bang (GGB) in a hyperlipidemic animal model induced by a high-fat diet using diverse biological methods. Methods: This study was to determine whether fractionated GGB extracts inhibit reactive oxygen species (ROS) and nitric oxide (NO) in RAW 264.7 cells. Hyperlipidemia was induced by a high-fat diet fed for 6 weeks. Total cholesterol, LDL cholesterol, HDL cholesterol, triglyceride, liver function and histologic change of liver were measured after oral administration of GGB. Results: 1. DPPH scavenging bow performance was increased in a concentration-dependent manner by GGB. 2. Compared to the control group, NO production (%) and ROS production (%) were decreased significantly by GGB. 3. Total-cholesterol, LDL-cholesterol, triglyceride were decreased significantly by GGB. 4. HDL cholesterol increased more than the control group, but not significantly. 5. In histopathologic examination, fatty liver (hepatic steatosis) was inhibited, almost no rounds of fat were observed in the liver. Conclusions: GGB would appear effective in the prevention and treatment of atherosclerosis, ischemic heart disease, other cardiovascular diseases caused by hyperlipidemia.

중만분소환 추출물이 Palmitate로 유발된 비알코올성 지방간 HepG2 cell 모델에 미치는 영향 (Effect of Jungmanbunso-hwan Extract on HepG2 Cell Model of Nonalcoholic Fatty Liver Disease Caused by Palmitate)

  • 이지원;최창원;전상윤;한창우;하예진
    • 대한한방내과학회지
    • /
    • 제37권3호
    • /
    • pp.442-452
    • /
    • 2016
  • Objectives: This study was performed to investigate the anti-lipogenic effect and the mechanism of Jungmanbunso-hwan extract (JMBSH) on a cellular model of non-alcoholic fatty liver disease (NAFLD) caused by palmitate in HepG2 cells.Methods: The JMBSH was prepared, andHepG2 cells were treated with various concentrations of JMBSH in order to perform an MTT assay. The HepG2 cells were cultivated in palmitate-containing media with or without extract of JMBSH. The intracellular lipid content in the HepG2 cells was examined. The effects of JMBSH on sterol regulatory element-binding transcription factor-1c (SREBP-1c), acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), stearoyl-CoA desaturase-1 (SCD-1), and AMP-activated protein kinase (AMPK) activation in HepG2 cells were measured.Results: JMBSH did not reduce HepG2 cell viability under 1,000 μg/mL. JMBSH considerably decreased intracellular lipid accumulation caused by palmitate in HepG2 cells. JMBSH repressed expression of SREBP-1c, which mediates the induction of lipogenic genes (ACC, FAS, and SCD-1). JMBSH also activated AMPK, which plays animportant role in the regulation of hepatic lipid metabolism.Conclusions: This study suggested that JMBSH relieves hepatic steatosis by repressing SREBP-1c, which mediates the induction of lipogenic genes. The anti-lipogenic effect of JMBSH may also be related to the activation of AMPK. Therefore, JMBSH could potentially be applied to NAFLD treatment after further clinical studies.

비알코올성 지방간 세포 모델에서 소분청음의 지방증 완화 효능 연구 (Research on Anti-lipogenic Effect of Sobuncheong-eum on Experimental Cellular Model of Non-alcoholic Fatty Liver Disease)

  • 이혜인;김지수;김천중;김하나;양태준;정상준;최창원
    • 대한한의학방제학회지
    • /
    • 제24권2호
    • /
    • pp.100-107
    • /
    • 2016
  • Objectives : The purpose of this study is to evaluate the anti-lipogenic effect of Sobuncheong-eum on non-alcoholic fatty liver disease in free fatty acid induced cellular model. Methods : HepG2 cells were treated with palmitate for 24h to overload intracellular triglyceride (TG) content in the presence or absence of Sobuncheong-eum extract. After palmitate treatment, Intracellular TG content was measured with TG assay kit. Several lipogenesis related markers, including AMP-activated protein kinase (AMPK), sterol regulatory element-binding transcription factor-1c (SREBP-1c), acetyl-CoA carboxylase (ACC), and fatty acid synthase (FAS), were assessed using Western-blot analyses and RT-PCR. Results : Palmitate markedly increased intracellular TG in HepG2 cells, and which were alleviated by coadministered Sobuncheong-eum extract. Sobuncheong-eum extract activated AMPK, which plays a key role in reducing hepatic lipid accumulation, and reduced lipogenic fators, SREBP-1c, ACC, and FAS. Conclusions : Taken together, it is conceivable that Sobuncheong-eum has an potential to alleviate steatosis, and which may be mediated by activating AMPK at least in part.

Investigation of Thiol/Disulfide Balance in Obese Rats with Non-Alcoholic Fatty Liver Disease

  • Tursun, Serkan;Gulerman, Hacer Fulya;Gazyagci, Serkal;Sahin, Yasar;Erel, Ozcan;Neselioglu, Salim
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • 제24권5호
    • /
    • pp.443-454
    • /
    • 2021
  • Purpose: Due to the increasing prevalence of obesity worldwide, non-alcoholic fatty liver disease (NAFLD) has reached epidemic dimensions over time. NAFLD is the most common cause of childhood chronic liver disease. There is a relationship between NAFLD and oxidative stress. This study aims to investigate the changes in thiol/disulfide homeostasis parameters to determine the oxidant/antioxidant balance in obese rats with diet-induced NAFLD and healthy rats. Methods: Twelve Wistar albino rats were used in this study. Experimentally produced NAFLD obese rats (n=6) and healthy rats were compared. Experimental NAFLD model was created with a special fatty liver diet (Altromin® C1063, Fatty Liver Diet, Exclusivet, Lage, Germany). The biochemical and histopathological features of the groups, as well as serum thiol/disulfide homeostasis parameters, were analyzed and compared. Results: In the experimentally induced NAFLD rat model, they gained more weight than the control group. Steatosis (at least grade 2) occurred in all rats fed with special fatty liver diet for 12 weeks. Histopathologically, no high-grade inflammation was observed in rats with experimental NAFLD after feeding a diet for 12 weeks. Results revealed that aspartate transaminase and alanine transaminase levels were high, albumin levels were low, oxidant stress parameters increased, and antioxidant thiol groups decreased. Conclusion: Experimental NAFLD is characterized by increased oxidant stress accompanying fatty tissue in the liver. Analysis of thiol/disulfide homeostasis parameters in NAFLD can be used in further studies to develop effective treatment options.

An assessment of responses to egg production and liver health of Japanese quails subjected to different levels of metabolizable energy

  • Diana Maryuri Correa, Castiblanco;Michele Bernardino, de Lima;Silvana Martinez Baraldi, Artoni;Erikson Kadoshe de Morais, Raimundo;Daniel Silva, Santos;Lizia Cordeiro, de Carvalho;Edney Pereira, da Silva
    • Animal Bioscience
    • /
    • 제36권1호
    • /
    • pp.98-107
    • /
    • 2023
  • Objective: Current quail production is configured as an economic activity in scale. Advancements in quail nutrition have been limited to areas such as breeding and, automation of facilities and ambience. The objective of this study was to evaluate the performance responses, liver and oviduct morphometry, and liver histology of Japanese laying quails subjected to different levels of nitrogen-corrected apparent metabolizable energy (MEn). Methods: A completely random design was used that consisted of nine levels of MEn, six replicates, and five hens per cage with a total of 270 quails. The experimental period lasted for 10 weeks. The variables of performance were subjected to analysis of variance and then regression analysis using the broken-line model. The morphometric and histological variables were subjected to multivariate exploratory techniques. Results: The MEn levels influenced the responses to zootechnical performance. The broken-line model estimated the maximum responses for feed intake, egg production, egg weight, and egg mass as 3,040, 2,820, 1,802, and 2,960 kcal of MEn per kg of diet, respectively. Multivariate analysis revealed that the occurrence of hepatic steatosis and increased levels of Kupffer cells were not related to MEn levels. Conclusion: The level of 2,960 kcal/kg of MEn meets performance variable requirements without compromising hepatic physiology.

Hepatoprotective Effect of Lactiplantibacillus plantarum DSR330 in Mice with High Fat Diet-Induced Nonalcoholic Fatty Liver Disease

  • Na-Kyoung Lee;Yunjung Lee;Da-Soul Shin;Jehyeon Ra;Yong-Min Choi;Byung Hee Ryu;Jinhyeuk Lee;Eunju Park;Hyun-Dong Paik
    • Journal of Microbiology and Biotechnology
    • /
    • 제34권2호
    • /
    • pp.399-406
    • /
    • 2024
  • Lactiplantibacillus plantarum DSR330 (DSR330) has been examined for its antimicrobials production and probiotics. In this study, the hepatoprotective effects of DSR330 were examined against nonalcoholic fatty liver disease (NAFLD) in a high-fat diet (HFD)-fed C57BL/6 mouse model. To induce the development of fatty liver, a HFD was administered for five weeks, and then silymarin (positive control) or DSR330 (108 or 109 CFU/day) was administered along with the HFD for seven weeks. DSR330 significantly decreased body weight and altered serum and hepatic lipid profiles, including a reduction in triglyceride, total cholesterol, and low-density lipoprotein cholesterol levels compared to those in the HFD group. DSR330 significantly alleviated HFD-related hepatic injury by inducing morphological changes and reducing the levels of biomarkers, including AST, ALT, and ALP. Additionally, DSR330 alleviated the expression of SREBP-1c, ACC1, FAS, ACO, PPARα, and CPT-1 in liver cells. Insulin and leptin levels were decreased by DSR330 compared to those observed in the HFD group. However, adiponectin levels were increased, similar to those observed in the ND group. These results demonstrate that L. plantarum DSR330 inhibited HFD-induced hepatic steatosis in mice with NAFLD by modulating various signaling pathways. Hence, the use of probiotics can lead to hepatoprotective effects.

Down-Regulation of Adipogenesis and Hyperglycemia in Diet-Induced Obesity Mouse Model by Aloe QDM

  • Kong, Hyun-Seok;Lee, Sung-Won;Shin, Seul-Mee;Kwon, Jeung-Hak;Jo, Tae-Hyung;Shin, Eun-Ju;Shim, Kyu-Suk;Park, Young-In;Lee, Chong-Kil;Kim, Kyung-Jae
    • Biomolecules & Therapeutics
    • /
    • 제18권3호
    • /
    • pp.336-342
    • /
    • 2010
  • Obesity-induced disorders contribute to the development of metabolic diseases such as insulin resistance, fatty liver diseases, and type 2 diabetes (T2D). In this study, we evaluated the hypoglycemic and hypolipidemic effects of aloe formula in high fat diet (HFD)-fed C57BL/6N mice. Male mice fed HFD for 28 weeks received a supplement of aloe formula, PAG, ALS, Aloe QDM, and an Aloe QDM complex for a further 8 weeks and were then compared with regular diet fed mice. After the experimental period, the blood glucose levels of the Aloe QDM complex-and PGZ-supplemented mice were significantly lower than those of the HFD-fed mice. Aloe formula, especially the Aloe QDM complex, and the PGZ treatment group profoundly affected the IPGTT and HOMA-IR. Immunochemistry was done for the morphological observation and the resulting sizes of adipocytes around the epididymis were significantly decreased when comparing the aloe formula-treated and HFD-fed groups. Further, aloe formula decreased mRNA expression of fatty acid synthesis enzymes and led to reduced hepatic steatosis in both liver and WAT. These results suggest that supplementation of Aloe QDM complex in the HFD-fed mice improved insulin resistance by lowering blood glucose levels and reducing adipocytes. Our data suggest that dietary aloe formula reduces obesity-induced glucose tolerance by suppressing fatty acid synthesis in the WAT and liver, both of which are important peripheral tissues affecting insulin resistance. The Aloe QDM complex could be used as a nutritional intervention against T2D.