• 제목/요약/키워드: steam exploded wood

검색결과 33건 처리시간 0.017초

Cybernetic Modeling of Simultaneous Saccharification and Fermentation for Ethanol Production from Steam-Exploded Wood with Brettanomyces custersii

  • Shin Dong-Gyun;Yoo Ah-Rim;Kim Seung-Wook;Yang Dae-Ryook
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권9호
    • /
    • pp.1355-1361
    • /
    • 2006
  • The simultaneous saccharification and fermentation (SSF) process consists of concurrent enzymatic saccharification and fermentation. In the present cybernetic model, the saccharification process, which is based on the modified Michaelis-Menten kinetics and enzyme inhibition kinetics, was combined with the fermentation process, which is based on the Monod equation. The cybernetic modeling approach postulates that cells adapt to utilize the limited resources available to them in an optimal way. The cybernetic modeling was suitable for describing sequential growth on multiple substrates by Brettanomyces custersii, which is a glucose- and cellobiose-fermenting yeast. The proposed model was able to elucidate the SSF process in a systematic manner, and the performance was verified by previously published data.

대체연료(代替燃料) 생산(生産)을 위한 목질재료(木質材料)의 가수분해(加水分解)에 관한 연구(硏究)(II) - 탈(脫)리그닌처리가 폭쇄처리재(爆碎處理材)의 효소적(酵素的) 당화(糖化)에 미치는 영향(影響) - (Studies on the Enzymatic Hydrolysis of Lignocellulosic Materials for the Alternative Fuels (II) - The Effect of Delignification Treatment on the Enzymatic Hydrolysis of Steam - Exploded Woods -)

  • 조남석
    • Journal of the Korean Wood Science and Technology
    • /
    • 제18권4호
    • /
    • pp.18-25
    • /
    • 1990
  • As polysaccharides in lignocellulosic materials are encrusted with aromatic lignin molecules and have high crystallinity, these require pretreatment to improve their digestability by cellulolytic enzymes. Though a number of pretreatment methods have been proposed, the steam explosion process is evaluated as a promising method. This study was performed to investigate the effect of delignification treatment by alkali, methanol and the others on the enzymatic hydrolysis. Delignification treatment resulted in great increase rate in enzymatic hydrolysis. Concerning to the effect of delignication reagents on the enzymatic hydrolysis, methanol treatment was more effective than alkali in the case of oak wood. In pine wood, the delignification did not showed any significant enhancement of hydrolysis rate. Complete delignification by Alkali-Oxygen. Alkali treatment showed high saccharification rate of 99.5%.

  • PDF

Production of Lignin Peroxidase by Phellinus igniarius and Cytotoxic Effects of Lignin Hydrolysates Derived from Wood Biomass on Cancer Cells

  • Lee, Jae-Sung;Lee, Jong-Suk;Yoon, Jae-Don;Beak, Sung-Mok;Bosire, Kefa-O.;Lee, Yong-Soo;Kim, Jung-Ae
    • Biomolecules & Therapeutics
    • /
    • 제12권3호
    • /
    • pp.189-193
    • /
    • 2004
  • Over the past several years, research efforts have been directed both at economically producing valuable substances from the wood biomass and at producing lignolytic enzymes at a lower cost. In the present study, we found that Phellinus igniarius, the basidiomycetes, secreted lignin peroxidase as a main lignolytic enzyme, which was detected maximum activity at 16th day of culture and showed 37 kDa of molecular mass in identification by activity assay and purification by anion-exchange chromatography. The Phellinus igniarius-derived lignin peroxidase hydrolyzed steam-exploded wood (Quercus mongolica) powder into small molecules showing cytotoxicity against cancer cel1s (HepG2 hepatoma, SK-N-SH neuroblastoma, B16 melanoma, MBT-2 bladder cancer). In addition, the enzyme hydrlysates of lignins (ELg) that were extracted from the steam-exploded oak showed more potent cytotoxic effects on the cancer cells than the enzyme hydrolysates of wood biomass (EWp), indicating that the cytotoxic effect of EWp may be due to the enzyme-degraded products of lignin among the lignocellulosics. Furthermore, the cytotoxic effect of ELg on Chang, normal liver cells, was much less potent than that of ELg on HepG2 and B16 cancer cells, indicating that the cytotoxic effect of ELg may be specific for cancer cells. The present results suggest that Phellinus igniarius may be a useful resource for the large-scale production of lignin peroxidase and that the lignin peroxidase may be applied for the generation of valuable biodegradation products from wood lignocellulosics for medical use.

리그노셀룰로스계 폐기물을 이용한 Cellulase의 생산 (Production of Cellulase from Lignocellulosic Waste.)

  • 강성우;이진석;김승욱
    • 한국미생물·생명공학회지
    • /
    • 제30권1호
    • /
    • pp.98-102
    • /
    • 2002
  • 본 연구에서는 cellulase를 보다 경제적으로 생산하기 위해 다양한 리그노셀룰로스계 폐기물 기질에 대해 cellulase 생산을 검토, 비교하였으며 가능성이 높은 기질에 대해 대량 생산 실험을 수행하였다. 폐 신문지는 0.2% NaOH를 사용하여 전처리한 경우 FPase와 CMCase의 최대활성이 각각 0.25 IU/mL, 4.6 IU/mL로 좋았으나, 폭쇄재 및 당화잔사 등 다른 기질의 최대활성인 0.6∼0.8 IU/mL, 5.5∼6.5 IU/mL에 비해 매우 낮았다. 30 L 발효기를 이용한 cellulase 생산 실험에서 FPase 최대활성은 lactose와 폭쇄재에서 각각 0.75 IU/mL, 0.72 IU/mL로서 당화 잔사의 최대 활성인 0.58 IU/mL에 비해 30% 높았으나 CMCase는 당화 잔사에서 최대활성이 6.3 IU/mL로 폭쇄재를 기질로 하였을 때 보다 15%높았다.

폭쇄처리(爆碎處理)된 목질계(木質系) Biomass의 산소가수분해(酸素加水分解)(I) -리그닌의 함량(含量)과 섬유소(纖維素)의 결정화도(結晶化度)가 산소가수분해(酸素加水分解)에 미치는 영향 (The Enzymatic Hydrolysis of Exploded Woody Biomass(I) -Effects of Lignin Contents and Cellulose Crystallinity on the Enzymatic Hydrolysis-)

  • 박영기;오정수
    • Journal of the Korean Wood Science and Technology
    • /
    • 제21권3호
    • /
    • pp.53-60
    • /
    • 1993
  • Substrates used were hardwood-Suwon poplar-(Populus alba${\times}$glandulosa L.) and softwood-pitch pine-(Pinus rigida M.). And these substrates were steam exploded then treated with sodium chlorite at 75$^{\circ}C$ with occasional stirring in order to obtain samples which had different lignin contents and crystallinity. And then this resulting samples incubated with a commercial cellulase derived from Trichoderma ressei. The contents of Klason lignin were decreased as the increasing of the ratio of sodium chlorite in the two species. The effect of hardwood was more effective than that of softwood in the same ratio of sodium chlorite. The minimum contents of Klason lignin were 0.8% and 5.1% respectively. And the crystallinities of cellulose were increased very little as increasing of the ratio of sodium clorite. The hydrolysis extent of the two species were increased as the increasing of delignification. Especially, the hydrolysis extent of hardwood was more higher than that of softwood. The maximum hydrolysis extent were 89.8% and 71.1%, respectively.

  • PDF

Optimization of Two-stage Pretreatment from Soybean Hull for Efficient Glucose Recovery

  • Jung, Ji-Young;Choi, Myung-Suk;Yang, Jae-Kyung
    • Journal of the Korean Wood Science and Technology
    • /
    • 제40권2호
    • /
    • pp.78-90
    • /
    • 2012
  • Soybean hull is an attractive feedstock for glucose production. To increase the glucose conversion in acid hydrolysis, a pretreatment method combined steam explosion with alkali pretreatment for soybean hull was studied. For first step pretreatment, steam explosion conditions (log Ro 2.45) were optimized to obtain maximum solid recovery and cellulose content. In the second step pretreatment, the conditions for potassium hydroxide pretreatment of steam exploded soybean hull were optimized by using RSM (response surface methodology). The optimum conditions for minimum lignin content were determined to be 0.6% potassium hydroxide concentration, $70^{\circ}C$ reaction temperature and 198 min reaction time. The predicted lignin content was 2.2% at the optimum conditions. Experimental verification of the optimum conditions gave the lignin content in similar value with the estimated value of the model. Finally, glucose conversion of pretreated soybean hull using acid hydrolysis resulted in $97.1{\pm}0.4%$. This research of two-step pretreatment was a promising method for increasing the glucose conversion in the cellulose-to-glucose process.

Effect of Steam Explosion Condition on the Improvement of Physicochemical Properties of Pine Chips for Feed Additives

  • JUNG, Ji Young;HA, Si Young;YANG, Jae-Kyung
    • Journal of the Korean Wood Science and Technology
    • /
    • 제50권1호
    • /
    • pp.59-67
    • /
    • 2022
  • Dietary fiber is considered a feed ingredient with high nutritional value in the broiler feed industry. Pine chips contain a large amount of dietary fiber and require some modification for use as broiler feed. In this study, pine chips were subjected to steam explosion under different severity factor (Ro) conditions to improve the chemical and physical properties of dietary fiber. The highest water-holding capacity, oil-holding capacity, and swelling capacity were found for Ro 4.0, followed by Ro4.5 and 3.5. The optimal condition for the steam explosion was determined to be Ro 4.0 (reaction temperature of 210℃, and reaction time of 6.0 min). Under these conditions, the water-holding capacity, oil-holding capacity, and swelling capacity of steam-exploded pine chips were 8.3 g/g, 6.5 g/g, and 5.0 mL/g, respectively. This study may contribute to the application of lignocellulose and related products in the broiler feed industry.

The Effect of Wood Extract as a Water-Soluble Fertilizer in the Growth of Lactuca sativa

  • JUNG, Ji Young;HA, Si Young;YANG, Jae-Kyung
    • Journal of the Korean Wood Science and Technology
    • /
    • 제49권4호
    • /
    • pp.384-393
    • /
    • 2021
  • Recently, due to environmental and toxicity issues, there has been increasing attention on research regarding natural products that can reduce the use of chemical fertilizers. Wood extracts derived from the biorefining process contain various fertilizer ingredients. HPLC analysis revealed that wood extract contains approximately 5.2% hemicellulosic sugar. The growth of lettuce (Lactuca sativa) upon treatment with wood extract (extract obtained from steam-exploded pine) or water-soluble fertilizers containing different nutrients was analyzed in this study. After two weeks, the growth characteristics of lettuce as affected by wood extract or water-soluble fertilizers were significantly different. The effect of water-soluble fertilizers containing ascorbic acid, magnesium sulfate, citric acid, potassium nitrate, amino acids, or seaweed extract was less desirable than that of wood extracts regarding plant height (18.6 cm), number of leaves (10), leaf length (14.1 cm), shoot fresh wight (9.8 g/plant), root fresh weight (0.8 g/plant) and shoot dry weight (0.6 g/plant). The plant height, number of leaves, leaf length, shoot fresh wight, root fresh weight, shoot dry weight of water-soluble fertilizers containing wood extract were significantly different compared to the control (plant height :13.5 cm, number of leaves : 7, leaf length : 9.4 cm, shoot fresh wight : 5.3 g/plant, root fresh weight : 0.7 g/plant, shoot dry weight : 0.4 g/plant, root dry weight : 0.07 g/plant). From these results, it was concluded that wood extract can be used as a potential water-soluble fertilizer to increase the yield of leafy vegetables.

왕겨보드 제조를 위한 적정 전처리 조건에 관한 연구 (Study on the Optimum Pre-treatment Condition for Manufacture of Rice Hull Board)

  • 이화형;한기선
    • Journal of the Korean Wood Science and Technology
    • /
    • 제28권3호
    • /
    • pp.9-13
    • /
    • 2000
  • 본 연구는 해마다 100만 톤 이상이 생산되는 국내산 왕겨를 이용하여 왕겨보드를 제조함에 있어, 무처리 왕겨로 제조한 왕겨보드의 기계적 성질의 단점을 보완하기 위하여 왕겨를 전처리함으로써 그 물리 기계적 성질을 개선하기 위해 실시되었다. 연구결과를 요약하면, 무처리, 증자처리 및 가성소다로 알칼리처리한 왕겨보드보다 폭쇄처리한 왕겨보드가 휨강도 및 박리강도가 더 높았으며, 이때 적정 폭쇄처리 조건은 압력 20kgf/$cm^2$, 시간 1분과 압력 25kgf/$cm^2$, 1분이었다. 무처리 왕겨보드의 경우 휨강도, 박리강도 모두 KS를 만족시키지 못한 반면, 폭쇄처리 왕겨 보드의 경우 KS PB 18.0형의 기준을 모두 만족시켰으며, PB 대조구와 비교할 때 동등한 강도를 보였다. 기타 왕겨 전처리의 경우에 있어서도 가성소다처리보다는 증자처리가 왕겨보드의 강도를 향상시키는 것으로 나타났다.

  • PDF

우드칩과 피트모스를 원료로 하는 식생기반재의 물리·화학적 특성 및 생육 특성 (Physicochemical Properties and Growth Characteristics of Wood Chip and Peat Moss Based Vegetation Media)

  • 김지수;정지영;하시영;양재경
    • Journal of the Korean Wood Science and Technology
    • /
    • 제44권3호
    • /
    • pp.323-336
    • /
    • 2016
  • 본 연구는 식생기반재인 피트모스를 대체하기 위하여 우드칩에 폭쇄처리를 적용해 보았으며, 물리 화학적 분석을 통해 피트모스와 특성을 비교하였다. 또한 피스모스와 전처리 우드칩을 각각 90 : 10, 70 : 30 및 50 : 50 (w/w) 비율로 혼합하여 식생기반재를 제조한 다음 물리 화학적 특성 및 생육 특성을 비교하였다. 전처리 우드칩의 부피밀도, 공극률 및 pH는 각각 $0.26g/cm^3$, 93.3% 및 5.7로 나타났으며, 이는 식생기반재로서 적합한 물리 화학적 범위에 포함되는 것으로 확인되었다. 특히, 피트모스와 전처리 우드칩을 70 : 30 (w/w) 혼합하여 제조된 식생기반재는 배추, 잔디 및 싸리에 있어서 피트모스보다 높은 발아율, 초장생장 및 잎 생장을 나타냈으며 또한, 식물생장에 적합한 부피밀도, 공극률, 수분보유력, pH 및 C/N비를 나타냈다(각각 $0.20g/cm^3$, 91.8%, 76.1%, pH 5.2 및 51.0).