• 제목/요약/키워드: steady-state current

검색결과 815건 처리시간 0.029초

Design of Gain Controller of Decoupling Control of Grid-connected Inverter with LCL Filter

  • Windarko, Novie Ayub;Lee, Jin-Mok;Choi, Jae-Ho
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2008년도 추계학술대회 논문집
    • /
    • pp.124-126
    • /
    • 2008
  • Grid Connected inverter is produced current to deliver power to grid. To provide low THD current, LCL filters is effective to filter high frequency component of current output from inverter. To provide sinusoidal waveform, there are many researchers have been proposed several controllers for grid-connected inverter controllers. Synchronous Reference Frame (SRF)-based controller is the most popular methods. SRF-based controller is capable for reducing both of zero-steady state error and phase delay. But SRF based controller is contained cross-coupling components, which generate some difficulties to analyze. In this paper, SRF based controller is analyzed. By applying decoupling control, cross-coupling component is eliminated and single phase model of the system is obtained. Through this single phase model, gain controller is designed. To reduce steady state error, proportional gain is set as high as possible, but it may produce instability. To compromise between a minimum steady state error and stability, the single phase model is evaluate through Root Locus and Bode diagram. PSIM simulation is used to verify the analysis.

  • PDF

Design of Multi-winding Inductor for Minimum Inductor Current Ripple Using Optimized Coupling Factor

  • Kang, Taewon;Suh, Yongsug
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2016년도 전력전자학술대회 논문집
    • /
    • pp.231-232
    • /
    • 2016
  • This paper investigates the design of multi-winding coupled inductor for minimum inductor current ripple. Based on the general circuit model of coupled inductor together with the operating principles of dc-dc converter, the relationship between the ripple size of inductor current and the coupling factor is derived under the different duty ratio. The optimal coupling factor of n-phase multi-winding coupled inductor which corresponds to a minimum inductor ripple current becomes -(1/n-1), i.e. a complete inverse coupling without leakage inductance, as the duty ratio of steady-state operating point approaches 1/n, 2/n, ${\cdots}$ or (n-1)/n. In an opposite manner, the optimal coupling factor value of zero, i.e. zero mutual inductance, is required when the duty ratio of steady-state operating point approaches either zero or one. Therefore, coupled inductors having optimal coupling factor can minimize the ripple current of inductor and inductor size.

  • PDF

An Enhanced Finite-Settling-Step Direct Torque and Flux Control (FSS-DTFC) for IPMSM Drives

  • Kim, Sehwan;Seok, Jul-Ki
    • Journal of Power Electronics
    • /
    • 제16권4호
    • /
    • pp.1367-1374
    • /
    • 2016
  • This paper presents a discrete-time version of voltage and current limited operation using an enhanced direct torque and flux control method for interior permanent magnet synchronous motor (IPMSM) drives. A command voltage vector for airgap torque and stator flux regulation can be uniquely determined by the finite-settling-step direct torque and flux control (FSS-DTFC) algorithm under physical constraints. The proposed command voltage vector trajectories can be developed to achieve the maximum inverter voltage utilization for the discrete-time current limit (DTCL)-based FSS-DTFC. The algorithm can produce adequate results over a number of the potential secondary upsets found in the steady-state current limit (SSCL)-based DTFC. The fast changes in the torque and stator flux linkage improve the dynamic responses significantly over a wide constant-power operating region. The control strategy was evaluated on a 900W IPMSM in both simulations and experiments.

PEM 연료전지 스택의 과도상태 출력특성에 관한 실험적 연구 (An Experimental Study on Transient Characteristics of PEM Fuel Cell Stack)

  • 김현일;황재순;정태용;신동훈;남진현;김영규
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2003-2008
    • /
    • 2007
  • The transient power characteristics of a PEM fuel cell stack was experimentally studied using a commercial 1.2kW PEM fuel cell ($Nexa^{TM}$ Power Module, Ballard Power System Inc.). The conditions in PEM fuel cell stack such as temperature and water content change rather slowly because of their large heat capacity and long channel length, which results in long transient time to converge to a steady state. The steady characteristics of the PEM fuel cell module was determined first, followed by the measurement of its transient characteristics upon stepwise and continuous load current changes. During the stepwise current change from 5A to 25A, the output voltage initially decreased below the steady voltage and then increased gradually. Similar behavior was also observed for the stepwise current change from 25A to 5A. This transient behavior is explained with reference to the evolution of the temperature and water content of the PEM fuel cell stack.

  • PDF

단상 부스트 PFC 컨버터용 가상 DQ 동기좌표계 기반 고성능 전류제어 알고리즘 (High Performance Current Control Algorithm Based on Virtual DQ Synchronous Reference Frame for Single-Phase Boost PFC Converter)

  • 김현근;진성민;이상희;이수형;김준석
    • 전력전자학회논문지
    • /
    • 제22권6호
    • /
    • pp.496-503
    • /
    • 2017
  • This study proposes a high-performance current control algorithm for a diode-bridge-type single-phase boost power factor correction (PFC) converter. The conventional asynchronous single-phase current controllers that directly control AC-type current tend to be accompanied by steady-state errors due to their poor dynamic characteristics for the transient-state, which can be attributed to bandwidth limitations and phase delays. In the proposed algorithm, an ideal current control with minimal phase delays and steady-state errors can be achieved by using a virtual DQ synchronous reference frame and by controlling the synchronous reference frame excluding the frequency component in the single-phase system. The performance of the conventional asynchronous single-phase current controller is compared with that of the proposed algorithm through simulation and experiments, and the results have confirmed the superiority of the latter.

전류오차 백터 제어방식에 의한 새로운 형태의 전류 제어 PWM 전압형 정류기 (Novel Current Controlled PWM-VSC Converter Using Current Error Vector Control)

  • 박민호;최재호
    • 대한전기학회논문지
    • /
    • 제38권4호
    • /
    • pp.261-268
    • /
    • 1989
  • A novel current controlled PWM voltage source type converter and control strategy is proposed that is able to draw nearly sinusoidal current at unity power factor from three phase power lines. Current error vector control scheme is used which has two operating states : low harmonic current content state and quick current response state. The state is changed according to the current error to optimize the steady state and transient state performances. To regulate the dc oupput voltage, the magnitude of the reference current is determined by a controller dc voltage error. The ac input power factor can be controlled with unity, and even leading or lagging by adjusting the relative position of the reference current with respect to the supply voltage.

  • PDF

정상상태 판별을 이용한 고전압전원장치의 Wireless 병렬운전 (Wireless Parallel Operation of High Voltage DC Pourer Supply using Steady-state Estimation)

  • 백주원;유동욱;손호섭;김장목
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제53권4호
    • /
    • pp.255-261
    • /
    • 2004
  • This paper presents an improved droop method which minimizes the voltage droop of a parallel-connected power supply Conventionally, the droop method has been used to achieve a simple structure and no-interconnections among power sources. However, it has a trade-off between output voltage regulation and load sharing accuracy In this paper, the droop is minimized with a current and droop gain control using steady-stage estimation. The proposed method can achieve both good voltage regulation and good load sharing. A design example of two 10㎸, 100㎃ parallel modules is made and tested to verify the proposed current-sharing method.

Steady-State Characteristics of Resonant Switched Capacitor Converters

  • Shoyama Masahito;Deriha Fumitoshi;Ninomiya Tamotsu
    • Journal of Power Electronics
    • /
    • 제5권3호
    • /
    • pp.206-211
    • /
    • 2005
  • Conventional switched capacitor converters have an inherent drawback that their efficiency decreases as the output current increases. This inherent drawback is due to a periodical forced charging and discharging operation in the internal switched capacitors accompanied by a large capacitor current. Their efficiency can not be increased by decreasing its internal resistance. As a result, conventional switched capacitor converters have been limited to uses with a very small output current. To solve this problem we presented a novel switched capacitor converter topology that uses a resonant operation instead of the forced charging and discharging operation. Its advantage over a conventional switched capacitor converter is higher efficiency even in a high output current region. In this paper, the operation analysis and steady-state characteristics are described in detail for a half buck type switched capacitor converter, and they are confirmed by experimentation.

A Comparative Study of Controllers for CSI Fed Induction Motor

  • Kumar, Piush;Agarwal, Vineeta
    • Journal of Power Electronics
    • /
    • 제10권2호
    • /
    • pp.165-170
    • /
    • 2010
  • This paper presents a comparative study of P and PI controllers for a current source inverter (CSI) fed induction motor drive system. A dq model has been used which incorporates the induction motor and the inverter power supply with current feedback. The model is used first to generate the steady state curves to determine the operating point through computer simulations using the software package MATLAB. Then a transient analysis has been carried out for different values of the speed and current controller parameters. The controller value is adjusted by the Ziegler-Nichols method. It has been observed that the transient time to reach the steady state value is larger with the PI controller than with the P controller.

환상압연 공정의 실용적 모델링 방법에 관한 연구 (A Study on the Practical Finite Element Modeling Method for Ring Rolling)

  • 이두규;김응주;이용신
    • 소성∙가공
    • /
    • 제24권3호
    • /
    • pp.161-166
    • /
    • 2015
  • The finite element method has been widely used in the analysis of ring rolling. For ring rolling it requires a high computational expense due to the non-steady state material flow characteristics of the process. The high computational expense causes the finite element analysis to be impractical for industrial applications. In the current study, we aim to develop a practical implicit finite element modeling method for ring rolling. This method uses a step-wise steady state assumption and is called the “Stepped method”. The stepped method divides the whole process time of unsteady-state flow model into a finite number of steady-state models. It then solves the process at several specific time steps until convergence is reached. In order to confirm the performance and validity of the newly proposed stepped method, the result from the stepped method were compared to the results from a Lagrangian finite element method and to results from experiments reported in the literature.