• Title/Summary/Keyword: steady-state current

Search Result 815, Processing Time 0.024 seconds

High Step-Down Multiple-Output LED Driver with the Current Auto-Balance Characteristic

  • Luo, Quanming;Zhu, Binxin;Lu, Weiguo;Zhou, Luowei
    • Journal of Power Electronics
    • /
    • v.12 no.4
    • /
    • pp.519-527
    • /
    • 2012
  • A high step-down multiple-output LED driver is proposed in this paper. Firstly, the derivation of the driver with dual-output is presented and its operation principle and steady state performance are analyzed in detail. Secondly, a high step-down N-channel LED driver is proposed and its current auto-balance characteristic and step-down ratio are analyzed. Finally, an experimental prototype is built and the experimental results are given. The theoretical analysis and experimental results show that the proposed driver has the following virtues: First, if load balancing is achieved, the voltage gain is 1/N that of a Buck driver, where N is the number of channels. Second, each output automatically has an equal output current, without requiring more current close-loop control circuits than a Buck driver. Last, the voltage stresses of the switches and diodes are lower than those of a Buck driver, meaning that lower voltage switches and diodes can be used, and a higher efficiency can be expected.

Deadbeat Control with a Repetitive Predictor for Three-Level Active Power Filters

  • He, Yingjie;Liu, Jinjun;Tang, Jian;Wang, Zhaoan;Zou, Yunping
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.583-590
    • /
    • 2011
  • Three-level NPC inverters have been put into practical use for years especially in high voltage high power grids. This paper researches three-level active power filters (APFs). In this paper a mathematical model in the d-q coordinates is presented for 3-phase 3-wire NPC APFs. The deadbeat control scheme is obtained by using state equations. Canceling the delay of one sampling period and providing the predictive value of the harmonic current is a key problem of the deadbeat control. Based on this deadbeat control, the predictive output current value is obtained by the state observer. The delay of one sampling period is remedied in this digital control system by the state observer. The predictive harmonic command current value is obtained by the repetitive predictor synchronously. The repetitive predictor can achieve a better prediction of the harmonic current with the same sampling frequency, thus improving the overall performance of the system. The experiment results indicate that the steady-state accuracy and the dynamic response are both satisfying when the proposed control scheme is implemented.

Finite Control Set Model Predictive Control of AC/DC Matrix Converter for Grid-Connected Battery Energy Storage Application

  • Feng, Bo;Lin, Hua
    • Journal of Power Electronics
    • /
    • v.15 no.4
    • /
    • pp.1006-1017
    • /
    • 2015
  • This paper presents a finite control set model predictive control (FCS-MPC) strategy for the AC/DC matrix converter used in grid-connected battery energy storage system (BESS). First, to control the grid current properly, the DC current is also included in the cost function because of input and output direct coupling. The DC current reference is generated based on the dynamic relationship of the two currents, so the grid current gains improved transient state performance. Furthermore, the steady state error is reduced by adding a closed-loop. Second, a Luenberger observer is adopted to detect the AC input voltage instead of sensors, so the cost is reduced and the reliability can be enhanced. Third, a switching state pre-selection method that only needs to evaluate half of the active switching states is presented, with the advantages of shorter calculation time, no high dv/dt at the DC terminal, and less switching loss. The robustness under grid voltage distortion and parameter sensibility are discussed as well. Simulation and experimental results confirm the good performance of the proposed scheme for battery charging and discharging control.

Quasi Steady Stall Modelling of Aircraft Using Least-Square Method

  • Verma, Hari Om;Peyada, N.K.
    • International Journal of Aerospace System Engineering
    • /
    • v.7 no.1
    • /
    • pp.21-27
    • /
    • 2020
  • Quasi steady stall is a phenomenon to characterize the aerodynamic behavior of aircraft at high angle of attack region. Generally, it is exercised from a steady state level flight to stall and its recovery to the initial flight in a calm weather. For a theoretical study, such maneuver is demonstrated in the form of aerodynamic model which consists of aircraft's stability and control derivatives. The current research paper is focused on the appropriate selection of aerodynamic model for the maneuver and estimation of the unknown model coefficients using least-square method. The statistical accuracy of the estimated parameters is presented in terms of standard deviations. Finally, the validation has been presented by comparing the measured data to the simulated data from different models.

A Hysteresis Current Controller for PV-Wind Hybrid Source Fed STATCOM System Using Cascaded Multilevel Inverters

  • Palanisamy, R.;Vijayakumar, K.
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.270-279
    • /
    • 2018
  • This paper elucidates a hysteresis current controller for enhancing the performance of static synchronous compensator (STATCOM) using cascaded H-bridge multilevel inverter. Due to the rising power demand and growing conventional generation costs a new alternative in renewable energy source is gaining popularity and recognition. A five level single phase cascaded multilevel inverter with two separated dc sources, which is energized by photovoltaic - wind hybrid energy source. The voltages across the each dc source is balanced and standardized by the proposed hysteresis current controller. The performance of STATCOM is analyzed by connecting with grid connected system, under the steady state & dynamic state. To reduce the Total Harmonic Distortion (THD) and to improve the output voltage, closed loop hysteresis current control is achieved using PLL and PI controller. The performance of the proposed system is scrutinized through various simulation results using matlab/simulink and hardware results are also verified with simulation results.

A 3-D Steady-State Analysis of Thermal Behavior in EHV GIS Busbar

  • Lei, Jin;Zhong, Jian-ying;Wu, Shi-jin;Wang, Zhen;Guo, Yu-jing;Qin, Xin-yan
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.781-789
    • /
    • 2016
  • Busbar has been used as electric conductor within extra high voltage (EHV) gas insulated switchgear (GIS), which makes EHV GIS higher security, smaller size and lower cost. However, the main fault of GIS is overheating of busbar connection parts, circuit breaker and isolating switch contact parts, which has been already restricting development of GIS to a large extent. In this study, a coupled magneto-flow-thermal analysis is used to investigate the thermal properties of GIS busbar in steady-state. A three-dimensional (3-D) finite element model (FEM) is built to calculate multiphysics fields including electromagnetic field, flow field and thermal field in steady-state. The influences of current on the magnetic flux density, flow velocity and heat distribution has been investigated. Temperature differences of inner wall and outer wall are investigated for busbar tank and conducting rod. Considering the end effect in the busbar, temperature rise difference is compared between end sections and the middle section. In order to obtain better heat dissipation effect, diameters of conductor and tank are optimized based on temperature rise simulation results. Temperature rise tests have been done to validate the 3-D simulation model, which is observed a good correlation with the simulation results. This study provides technical support for optimized structure of the EHV GIS busbar.

A Study on Steady State Characteristics of LLC Resonant Half Bridge Converter Considering Internal Losses (내부 손실이 고려된 LLC 공진형 하프브릿지 컨버터의 정상상태 특성에 관한 연구)

  • Ahn, Tae-Young
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.985-991
    • /
    • 2018
  • In this paper, an equivalent circuit reflecting the internal loss of the LLC resonant half bridge converter was proposed and a steady state characteristic equation including the loss factors was derived. Using the results, the frequency characteristics of I/O voltage gain and input impedance were compared with the lossless model In order to verify the proposed model and the derived equation, the main components of the 1kW class LLC resonant half bridge converter were selected under the same conditions and the steady state characteristics such as voltage gain and input impedance were compared. In particular, to compare more closely the steady state error of the two models, we observed the change in switching frequency with respect to the load current, which is considered to be the most important in the actual circuit design stage. As a result, it is confirmed that the error of the operating frequency is significantly improved from the proposed model and the analysis result.

A Study on the Optimal Design of LLC Resonant Half-bridge dc-dc Converter Using a Steady-state Model with Internal Loss Resistors (내부 손실 저항이 있는 정상상태 모델을 이용한 LLC 공진형 하프 브리지 dc-dc컨버터의 최적 설계에 관한 연구)

  • Yoo, Jeong Sang;Ahn, Tae Young
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.3
    • /
    • pp.80-86
    • /
    • 2022
  • In this paper, the optimal design and circuit simulation verification results of an LLC resonant half-bridge dc-dc converter using a steady-state model with internal loss resistance are reported. Above all, the input/output voltage gain and frequency characteristic equations in the steady-state were derived by reflecting the internal loss resistance in the equivalent circuit. Based on the results, an LLC resonant half-bridge dc-dc converter with an input voltage of 360-420V, an output voltage of 54V, and a maximum power of 3kW was designed, and to verify the design, the PSIM circuit simulation was executed to compare and analyze the result. In particular, the operating range of the converter could be drawn from the frequency characteristic graph of the voltage gain, and when the converter was operated under light and maximum load conditions, it was confirmed that similar results were obtained by comparing simulation results and calculation results in the switching frequency characteristic graph. In addition, the change of the switching frequency with respect to the load current at each input voltage was compared with the calculated value and the simulation result. As a result, it was possible to confirm the usefulness of the analysis result reflecting the internal loss resistance proposed in this paper and the process of the optimal design.

Analysis of Response of a Wind Farm During Grid/inter-tie Fault Conditions (그리드/연계선 사고 시 풍력발전단지의 응동 분석)

  • Lee, Hye-Won;Kim, Yeon-Hee;Zheng, Tai-Ying;Lee, Sang-Cheol;Kang, Yong-Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.6
    • /
    • pp.1128-1133
    • /
    • 2011
  • In a wind farm, a large number of small wind turbine generators (WTGs) operate whilst a small number of a large generator do in a conventional power plant. To maintain high quality and reliability of electrical energy, a wind farm should have equal performance to a thermal power plant in the transient state as well as in the steady state. The wind farm shows similar performance to the conventional power plant in the steady state due to the advanced control technologies. However, it shows quite different characteristics during fault conditions in a grid, which gives significant effects on the operation of a wind farm and the power system stability. This paper presents an analysis of response of a wind farm during grid fault conditions. During fault conditions, each WTG might produce different frequency components in the voltage. The different frequency components result in the non-fundamental frequencies in the voltage and the current of a wind farm, which is called by "beats". This phenomenon requires considerable changes of control technologies of a WTG to improve the characteristics in the transient state such as a fault ride-through requirement of a wind farm. Moreover, it may cause difficulties in protection relays of a wind farm. This paper analyzes the response of a wind farm for various fault conditions using a PSCAD/EMTDC simulator.

Steady-State Integral Proportional Integral Controller for PI Motor Speed Controllers

  • Hoo, Choon Lih;Haris, Sallehuddin Mohamed;Chung, Edwin Chin Yau;Mohamed, Nik Abdullah Nik
    • Journal of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.177-189
    • /
    • 2015
  • The output of the controller is said to exceed the input limits of the plant being controlled when a control system operates in a non-linear region. This process is called the windup phenomenon. The windup phenomenon is not preferable in the control system because it leads to performance degradation, such as overshoot and system instability. Many anti-windup strategies involve switching, where the integral component differently operates between the linear and the non-linear states. The range of state for the non-overshoot performance is better illustrated by the boundary integral error plane than the proportional-integral (PI) plane in windup inspection. This study proposes a PI controller with a separate closed-loop integral controller and reference value set with respect to the input command and external torque. The PI controller is compared with existing conventional proportional integral, conditional integration, tracking back calculation, and integral state prediction schemes by using ScicosLab simulations. The controller is also experimentally verified on a direct current motor under no-load and loading conditions. The proposed controller shows a promising potential with its ability to eliminate overshoot with short settling time using the decoupling mode in both conditions.