• Title/Summary/Keyword: steady-flow effect

Search Result 464, Processing Time 0.025 seconds

가스터빈 엔진 천이 성능 시험에 의한 정상상태 성능 예측

  • Yang, In-Young;Jun, Yong-Min;Kim, Chun-Taek;Yang, Soo-Seok
    • Aerospace Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.1-10
    • /
    • 2003
  • Methodology of predicting steady performance of gas turbine engine from transient test data was explored to develop an economic performance test technique. Discrepancy of transient performance from steady performance was categorized as dynamic, thermal and aerodynamic transient effects. Each effect was mathematically modeled and quantified to provide correction factors for calculating steady performance. The influence of engine inlet/outlet condition change on engine performance was corrected firstly, and then steady performance was predicted from the correction factors. The result was compared with steady performance test data. This correction method showed an acceptable level of precision, 3.68% difference of fuel flow.

  • PDF

An Experimental Study on Small Capillary Pumped Cooling System (모세구동 소형 냉각시스템의 실험적 연구)

  • Yang, J.K.;Lee, K.J.;Lee, J.H.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.234-239
    • /
    • 2000
  • The capillary pumped cooling system (CPCS) is a cooling system which controls temperature of the small electronic devices, such as IC device systems, notebook computers, etc. An important feature of CPCS is that a working fluid circulates in a system by capillary force in tubes instead of mechanical input power. The cooling effect of CPCS is investigated with respect to heat flux, condensation temperature under different working fluids (water, ethanol, methanol). Capillary pumped flows are visualized under various conditions and mass flow rate and temperature are experimentally measured. It is shown that the increasing tendency of mass flux for each working fluid is observed as the temperature of evaporator increases, and that the cooling possibility of CPCS depends on the performance of evaparator and condenser which sustains the steady state temperature continuously.

  • PDF

EXACT SOLUTION FOR STEADY PAINT FILM FLOW OF A PSEUDO PLASTIC FLUID DOWN A VERTICAL WALL BY GRAVITY

  • Alam, M.K.;Rahim, M.T.;Islam, S.;Siddiqui, A.M.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.16 no.3
    • /
    • pp.181-192
    • /
    • 2012
  • Here in this paper, the steady paint film flow on a vertical wall of a non-Newtonian pseudo plastic fluid for drainage problem has been investigated. The exact solution of the nonlinear problem is obtained for the velocity profile. Also the average velocity, volume flux, shear stress on the wall, force to hold the wall in position and normal stress difference have been derived. We retrieve Newtonian case, when material constant ${\mu}_1$ and relaxation time ${\lambda}_1$ equal zero. The results for co-rotational Maxwell fluid is also obtained by taking material constant ${\mu}_1$ = 0. The effect of the zero shear viscosity ${\eta}_0$, the material constant ${\mu}_1$, the relaxation time ${\lambda}_1$ and gravitational force on the velocity profile for drainage problem are discussed and plotted.

Design and behavior of two profiles for structural performance of composite structure: A fluid interaction

  • Thobiani, Faisal Al;Hussain, Muzamal;Khadimallah, Mohamed Amine;Ghandourah, Emad;Alhawsawi, Abdulsalam;Alshoaibi, Adil
    • Steel and Composite Structures
    • /
    • v.43 no.2
    • /
    • pp.221-228
    • /
    • 2022
  • Two-dimensional stagnation point slip flow of a Casson fluid impinging normally on a flat linearly shrinking surface is considered. The modeled PDEs are changed into nonlinear ODEs through appropriate nonlinear transformations.The flow is assumed to be steady and incompressible, with external magnetic field acting on it. Similarity transformation is utilized to investigate the behavior of many parameters for heat and velocity distributions using truncation approach.The influence of buoyancy parameter, slip parameter, shrinking parameter, Casson fluid parameter on the heat profile. The effect of the magnetic parameter on the streamwise velocity profile is also investigated.

The Effect of Chamber Bottom Shape on Die Elastic Deformation and Process in Condenser Tube Extrusion (접합실 바닥형상이 컨덴서 튜브 직접압출 공정 및 금형탄성변형에 미치는 영향)

  • Lee, Jung-Min;Kim, Byung-Min;Jung, Young-Deuk;Cho, Hoon;Cho, Hyung-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.5
    • /
    • pp.66-72
    • /
    • 2003
  • In case of hollow cylinder extrusion using porthole die, the effects of extrusion parameters-temperature, the speed of extrusion, the shape of the die and mandrel-on metal flow in porthole die extrusion of aluminum have been investigated. However, there have been few studies about condenser tube extruded by porthole die. Original metal flow of condenser tube by porthole die extrusion is similar to hollow cylinder extrusion but the estimation of metal flow for extrusion parameters is different. For example, variation of chamber length in hollow extrusion only affects the welding pressure, however, the welding chamber length in condenser tube extrusion influences to the welding pressure as well as the deflection of mandrel. This study was designed to evaluate metal flow, welding pressure, extrusion load, tendency of mandrel deflection according to angular variation in the bottom of chamber in porthole die. Estimation was carried out using finite element method in as non-steady state. Analytical results can provide useful information the optimal design of porthole die.

Experimental Study on the Unsteady Cavitation of Turbopump Inducer (터보펌프 인듀서의 비정상 캐비테이션에 관한 실험적 연구)

  • Hong, Soon-Sam;Kim, Jin-Sun;Choi, Chang-Ho;Kim, Jin-Han
    • The KSFM Journal of Fluid Machinery
    • /
    • v.8 no.1 s.28
    • /
    • pp.23-29
    • /
    • 2005
  • Steady and unsteady cavitation characteristics of turbopump inducer were investigated in this paper. To investigate the effect of blade angle on the inducer performance, three inducers with inlet tip blade angle of $7.8^{\circ},\;7.0^{\circ},\;6.1^{\circ}$, respectively, were tested. For $7.8^{\circ},\;7.0^{\circ}$ inducers in the non-cavitating condition, head decreased linearly with flow rate, but head-flow rate curve had a dip at the flow coefficient ${\psi}=0.065$ for $6.1^{\circ}$ inducer. Attached cavitation and cavitation surge were found in the $7.8^{\circ},\;7.0^{\circ}$ inducers in the cavitation tests. During the attached cavitation one cell rotated at the same rotational speed as that of the inducer. The cavitation surge did not rotate and the oscillating frequency was $7{\sim}20\;Hz$. From the curve of the critical cavitation number versus flow rate, it was found that the steady cavitation performance of $6.1^{\circ}$ inducer was much lower than that of $7.8^{\circ},\;7.0^{\circ}$ inducers.

ANALYSIS OF STEADY FIRE-DRIVEN FLUID FLOW FOR RAILWAY TUNNEL BY DIFFERENT VELOCITY CONDITIONS AT THE END OF TUNNEL (종단부 유속조건 변화에 따른 철도터널 내 정상상태 화재유동해석)

  • Lee, D.C.;Lee, D.H.;Jung, W.S.;Park, S.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.208-213
    • /
    • 2010
  • In this study CFD(Computational Fluid Dynamics) analysis of the steady fire-driven fuid flow for the performance test of ventilation at railway tunnel between Heuksok and Nodeul Station from Seoul Metro 9 is performed. There were fans with exhaust and intake modes and each was installed at the middle and both ends of the tunnel. For this test, the pool fire source of methyl alcohol with 1.5MW and smoke generators were installed between the middle of tunnel and Heuksok Station. In this test, the smoke behavior from natural convection was observed for 10 minutes from the ignition of pool fire and then fans with intake-modes at both sides of Heuksok effect of fan-on with intake mode located in the opposite side of the tunnel nearby Heuksok Station on fire-driven fluid flow is studied on when the boundary conditions of fan-on at the tunnel between Heuksok and Nodeul Station are the same as test. FLUENT, a commercial CFD code, is used for this analysis.

  • PDF

Experimental Study on the Unsteady Cavitation of Turbopump Inducer (터보펌프 인듀서의 비정상 캐비테이션에 관한 실험적 연구)

  • Hong, Soon-Sam;Kim, Jin-Sun;Choi, Chang-Ho;Kim, Jin-Han
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.333-339
    • /
    • 2003
  • Steady and unsteady cavitation characteristics of turbopump inducer were investigated in this paper. To see the effect of blade angle on the inducer performance, three inducers with inlet tip blade angle of $7.8^{\circ},\;7.0^{\circ},\;6.1^{\circ}$, respectively, were tested. For $7.8^{\circ},\;7.0^{\circ}$ inducers in the non-cavitating condition, head decreased linearly with flow rate, but head-flow rate curve had a dip at the flow coefficient ${\Phi}=0.065\;for\;6.1^{\circ}$ inducer. Rotating cavitation and cavitation surge were found in the $7.8^{\circ},\;7.0^{\circ}$ inducers in the cavitation tests. During the rotating cavitation one cell rotated at the same rotational speed as that of the inducer. The cavitation surge did not rotate and the oscillating frequency was $7{\sim}20\;Hz$. From the curve of the critical cavitation number versus flow rate, it was found that the steady cavitation performance of $6.1^{\circ}$ inducer was much lower than that of $7.8^{\circ},\;7.0^{\circ}$ inducers.

  • PDF

CONTROL OF SQUARE CYLINDER FLOW USING PLASMA SYNTHETIC JETS (플라즈마 합성제트를 이용한 사각 실린더 유동의 제어)

  • Kim, Dong-Joo;Kim, Kyoung-Jin
    • Journal of computational fluids engineering
    • /
    • v.17 no.2
    • /
    • pp.85-92
    • /
    • 2012
  • Flows over a square cylinder with and without plasma actuation are numerically investigated to see whether plasma actuation can effectively modify vortex shedding from the cylinder and reduce the drag and lift fluctuations. In this study, a plasma synthetic jet actuator is mounted on the rear side of cylinder as a means of direct-wake control. The effect of plasma actuation is considered by adding a momentum forcing term in the Navier-Stokes equations. Results show that the reduction of mean drag and lift fluctuations is obtained for both steady and unsteady actuation. However, the steady actuation is better than the unsteady one in terms of mean drag as well as drag fluctuations. With the strong steady actuation considered, the interaction of two separating shear layers from rear corners is effectively weakened due to the interference of synthetic jets. It results in a merging of synthetic-jet and shear-layer vortices and the increase of vortex shedding frequency. On the other hand, the unsteady actuation generates pulsating synthetic jets in the near wake, but it does not change the vortex shedding frequency for the actuation frequencies considered in this study.

Numerical Prediction of Steady and Unsteady Performances of Contrarotating Propellers

  • Lee, Chang-Sup;Kim, Young-Gi;Baek, Myung-Chul;Yoo, Jae-Hoon
    • Journal of Hydrospace Technology
    • /
    • v.1 no.1
    • /
    • pp.29-40
    • /
    • 1995
  • This paper describes the procedure to predict steady and unsteady performances of a contrarotating propeller(CRP) by a mixed formulation of the boundary value problem(BVP) far the flow around a CRP. The blade BVP is treated by a classical vortex lattice method, whereas the hub BVP is solved by a potential-based panel method. Blades and trailing wakes are represented by a vortex and/or source lattice system, and hubs are represented by normal dipole and source distributions. Both forward and aft propellers are solved simultaneously, thus treating the interaction effect without iteration. The unsteady performance is computed directly in time domain. The new numerical procedure requires a large amount of storage and computing time, which is however no longer a limit in a modern computer system. Sample computations show that the steady performance compares very well with the experiments. The predicted unsteady behavior shows that the dominant harmonics of the total forces are multiples of not only the number of blades of the forward and aft propellers but also the product of both blade numbers. The magnitude of the latter harmonics, present also in uniform oncoming flow, may reach abort 50% of the mean torque for the aft propeller, which in turn may cause a serious vibration problem in the complicated contrarotating shafting system.

  • PDF