• 제목/요약/키워드: steady shear flow behavior

검색결과 54건 처리시간 0.024초

이중 분지관내 혈액 및 혈액대용유체의 3차원 유동해석 (3-D Flow Analysis of Blood and Blood Substitutes in a Double Branching Model)

  • 서상호;유상신;노형운
    • 대한의용생체공학회:의공학회지
    • /
    • 제18권2호
    • /
    • pp.187-196
    • /
    • 1997
  • The three-dimensional flow analysis using the finite volume method is presented to compare the steady flow characteristics of blood with those of blood substitutes such as water and aqueous polymer solution in an idealized double branching model. The model is used to simlllate the region of the abdominal aorta near the celiac and superior mesenteric branches. Apparent viscosities of blood and the aqueous Separan solution are represented as a function of shear rate by the Carreau model, Water and aqueoiu Separan AP-273 500wppm solution are frequently used as blood substitutes in vitro experiments. Water is a typical Newtonian fluid and blood and Separan solution are non-Newtonian fluids. Flow phenomena such as velocity distribution, pressure variation and wall shear stress distribution of water, blood and polymer solution are quite different due to differences of the rheological characteristics of fluids. Flow phenomena of polymer solution are qualitatively similar to those of blood but the phenomena of water are quite different from those of blood and polymer solution. It is recommended that a lion-Newtonian fluid which exhibits very similar rheological behavior to blood be used in vitro experiments. A non-Newtonian fluid whose rheological characteristics are very similar to those of blood should be used to obtain the meaninylll hemodynamic data for blood flow in vitro experiment and by numerical analysis

  • PDF

Rheological Properties of Hot Pepper-soybean Pastes Mixed with Acetylated Starches

  • Choi, Su-Jin;Chang, Hak-Gil;Yoo, Byoung-Seung
    • Food Science and Biotechnology
    • /
    • 제17권4호
    • /
    • pp.780-786
    • /
    • 2008
  • Effect of acetylated starches (acetylated rice starch and acetylated tapioca starch) on rheological properties of hot pepper-soybean paste (HPSP) at different mixing ratios of rice flour (RF) and acetylated starch (AS) (10/0, 9/1, 8/2, and 7/3) was evaluated in steady and dynamic shear. All HPSP samples at $25^{\circ}C$ exhibited shear-thinning (n=0.31-0.36) and thixotropic behavior with high yield stresses and their steady flow curves were well described by power law and Casson models. The presence of AS resulted in the decrease in consistency index (K), apparent viscosity (${\eta}_{a,100}$), and yield stress (${\sigma}_{oc}$), and their predominant decreases were noticed at higher ratio of RF to AS (7/3 ratio). Arrhenius temperature relationship represents variation with temperature in the range of $5-35^{\circ}C$ with the high determination coefficients ($R^2=0.97-0.99$). Dynamic moduli (G', G", and ${\eta}^*$) values of HPSP samples mixed with AS were lower than those of HPSP with no added AS within the experimental range of frequency (0.63-62.8 rad/sec). Steady and dynamic shear rheological properties of HPSP samples seem to be greatly influenced by the presence of acetylated starch.

미세입자분산 고분자 현탁액의 3차원 직접수치해석 (DIRECT NUMERICAL SIMULATION OF PARTICLE SUSPENSIONS IN A POLYMERIC LIQUID)

  • 황욱렬
    • 한국전산유체공학회지
    • /
    • 제14권4호
    • /
    • pp.101-108
    • /
    • 2009
  • We present a new finite-element scheme for direct numerical simulation of particle suspensions in simple shear flow of a viscoelastic fluid in 3D. The sliding tri-periodic representative cell concept has been combined with DEVSS/DG finite element scheme by introducing constraint equations along the domain boundary. Rigid body motion of the freely suspended particle is described by the rigid-shell description and implemented by Lagrangian multipliers on particle boundaries. We present the bulk rheology of suspensions through the numerical examples of single-, two- and many-particle problems, which represent a large number of such systems in simple shear flow. We report the steady bulk viscosity and the first normal stress coefficient, which show shear-thickening behavior for both properties.

Rheological Evaluation of Petroleum Jelly as a Base Material in Ointment and Cream Formulations : Linear Viscoelastic Behavior

  • Park, Eun-Kyoung;Song, Ki-Won
    • Journal of Pharmaceutical Investigation
    • /
    • 제41권3호
    • /
    • pp.161-171
    • /
    • 2011
  • The objective of the present study is to systematically characterize a linear viscoelastic behavior of petroleum jelly in small amplitude oscillatory shear flow fields correspondent to the rheological ground state. With this aim, using a strain-controlled rheometer, the dynamic viscoelastic properties of commercially available petroleum jelly have been measured at $37^{\circ}C$ (body temperature) over a wide range of angular frequencies at an extremely small strain amplitude of 0.1 %. In this article, the linear viscoelastic behavior was reported in detail and then explained from a structural view-point of petroleum jelly and discussed in depth with respect to the consumer's requirements. Main findings obtained from this study can be summarized as follows : (1) The storage modulus is always greater than the loss modulus over an entire range of angular frequencies studied, meaning that the linear viscoelastic behavior of petroleum jelly is dominated by an elastic nature rather than a viscous nature. (2) Petroleum jelly shows a desirable linear viscoelastic behavior with respect to the consumer's requirements because it is undesirable for the product to flow down from the skin at an initial stage upon contact with the human skin. (3) A fractional derivative model shows an excellent applicability to describe a linear viscoelastic behavior of petroleum jelly. However, this model should be used with a special caution because there exists no physical meaning for the model parameters. (4) A modified form of the Cox-Merz rule gives a good ability to predict the relationship between steady shear flow properties (nonlinear behavior) and dynamic viscoelastic properties (linear behavior) for petroleum jelly.

협 부가 있는 동맥 내부에서의 맥동유동 (Pulsatile Flow in the Artery with Stenosis)

  • 손정락;주상우;서상호;심은보
    • 대한기계학회논문집B
    • /
    • 제26권1호
    • /
    • pp.39-44
    • /
    • 2002
  • The arterial stenosis related to the intimal thickening of the arterial wall is the main cause of many diseases in human cardiovascular system. Hemodynamic behavior of the blood flow is influenced by the presence of the arterial stenosis. In this study, effects of the pulsatile flow, caused by the periodic motion of the heart, on the blood flow and its interaction with the arterial stenosis are analyzed by the FEM-based computational fluid dynamics. As a result, it was found that the characteristics of the pulsatile flow in the artery with stenosis are quite different from those of the steady flow. And, the pulsatile flow condition affects the wall shear stress, which is one of the most important physiological parameters in the hemodynamics.

Rheological Properties of Waxy Rice Starch-Gum Mixtures in Steady and Dynamic Shear

  • Kim, Do-Dan;Lee, Young-Seung;Yoo, Byoung-Seung
    • Preventive Nutrition and Food Science
    • /
    • 제14권3호
    • /
    • pp.233-239
    • /
    • 2009
  • The effects of guar gum (GG) and xanthan gum (XG) at different concentrations (0, 0.2, 0.4, and 0.6% w/w) on the rheological properties of Korean waxy rice starch (WRS) pastes were evaluated under both steady and dynamic shear conditions. The flow properties of WRS-gum mixtures were determined from the rheological parameters of the power law model. The addition of GG and XG to WRS resulted in an increase in the apparent viscosity ($\eta_{a,100}$) and consistency index (K) values obtained from power law model. The flow behavior index (n) values of the WRS-XG mixtures decreased with an increase in gum concentration while there was only a marginal difference between n values for the WRS-GG mixtures. Dynamic moduli (G', G", and $\eta^*$) values in the WRS-gum mixture systems also increased with an increase in gum concentration. WRS-XG mixtures had higher dynamic moduli and lower tan $\delta$ (ratio of G"/G') values than WRS-GG mixtures, indicating that the higher dynamic rheological properties of WRS-XG can be attributed to an increase in the viscoelasticity of the continuous phase in the starch-gum mixture systems, which was due to the higher viscoleastic properties of XG compared to GG. The dynamic ($\eta^*$) and steady shear ($\eta_a$) viscosities of the WRS-XG paste at a 0.2% gum concentration followed the Cox-Merz superposition rule.

정규배열내의 실린더 사이에서의 완전발달된 층류 유동의 기하학적 계수의 해석 (Analysis of Geometric Parameters for Fully Developed Laminar Flow Between Cylinders Arranged in Regular Array)

  • 이동렬
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제25권5호
    • /
    • pp.1037-1049
    • /
    • 2001
  • Considerable interest has evolved in the flow of non-Newtonian fluids in channels of noncircular cross section in compact heat exchanges. Analytical solution was developed for prediction of the flow rate and maximum velocity in steady laminar flow of any incompressible, time-independent non-Newtonian fluids in straight closed and open channels of arbitrary, but axially unchanging cross section. The geometric parameters and function of shear describing the behavior of the fluid model were evaluated for fluid flow among a bundle of rods arranged in triangular and square array. Numerical values of dimensionless maximum velocities, mean velocities, pressure-drop-flow parameters and friction factors were evaluated as a function of porosity and pitch-to-radius ratio.

  • PDF

Effect of Gum Addition on the Rheological Properties of Rice Flour Dispersions

  • Chun, So-Young;Kim, Hyung-Il;Yoo, Byoung-Seung
    • Food Science and Biotechnology
    • /
    • 제15권4호
    • /
    • pp.589-594
    • /
    • 2006
  • The effect of five commercial gums (carboxylmethylcellulose, CMC; guar gum, GG; hydroxypropylmethyl-cellulose, HPMC; locust bean gum, LBG; and xanthan gum) at a concentration of 0.25% on the rheological properties of rice flour (RF) dispersions was investigated in steady and dynamic shear. The steady shear rheological properties showed that RF gum mixture dispersions (5%, w/w) at $25^{\circ}C$ had high shear-thinning flow behavior (n=0.20-0.31) exhibiting a yield stress. Magnitudes of consistency index (K), apparent viscosity (${\eta}_{a,100}$), and Casson yield stress (${\sigma}_{oc}$) of RF-gum mixtures were much higher than those of RF dispersion with no added gum (control). Activation energy values (6.67-10.8 kJ/mole) of RF-gum mixtures within the temperature range of $25-70^{\circ}C$ were lower than that (11.9 kJ/mole) of the control. Dynamic rheological data of log (G', G") versus log frequency (${\omega}$) of RF-gum mixtures had positive slopes (0.15-0.37) with G' greater than G" over most of the frequency range (0.63-63 rad/sec), demonstrating a frequency dependency. Tan ${\delta}$ (G"/G') values of RF-gum mixtures, except for xanthan gum, were much higher than that of the control.

SiO2계열 젤화제 입자크기에 따른 니트로메탄 젤 추진제의 유변학적 특성 연구 (Rheological Characteristics of Nitromethane Gel Fuel with Nano/Micro Size of SiO2 Gellant)

  • 장진우;김시진;한승주;김진곤;문희장
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2017년도 제48회 춘계학술대회논문집
    • /
    • pp.456-461
    • /
    • 2017
  • 본 연구에서는 이산화규소를 젤화제로 사용한 니트로메탄 젤 추진제의 유변학적 특성을 분석하였다. 니트로메탄 젤은 나노 또는 마이크로 입자 크기의 젤화제를 각각 5 wt%, 6.5 wt%, 8 wt% 함량으로 첨가하여 제작되였으며 점도 측정 실험은 회전형 점도계를 이용하여 측정을 수행하였다. 제작된 젤 추진제는 항복응력이 존재함을 확인하였고 측정 범위 전 구간에서 전단박화 거동을 보이며 나노 크기의 젤화제를 첨가한 젤 추진제의 경우 마이크로 크기 대비 낮은 전단속도(1 ~ 100 1/s) 영역에서 높은 점도를 보였다. 또한 니트로메탄 젤 추진제의 경우, Herschel-Bulkley 모델 보다는 Teipel과 Forter-Barth가 제시한 모델을 사용하는 것이 적합함을 확인하였다.

  • PDF

다양한 농도의 카본블랙을 함유하는 폴리스티렌 및 폴리뷰틸메타크릴레이트 복합체 입자의 유동성 (Flow Behavior of Polystyrene and Poly(butyl methacrylate) Composite Particles Filled with Varying Concentrations of Carbon Black)

  • 박문수
    • Elastomers and Composites
    • /
    • 제44권3호
    • /
    • pp.336-342
    • /
    • 2009
  • 1.0 wt% 소수성실리카를 안정제로 하는 현탁중합에 의하여 $75^{\circ}C$에서 개시제의 농도를 변화하며 합성한 폴리스티렌 (PS) 및 폴리뷰틸메타크릴레이트 (PBMA) 입자의 점도를 모세관 레오미터 (capillary rheometer)를 이용하여 측정하였다. 중량평균분자량이 66,500 g/mol인 PS 입자는 $190^{\circ}C$에서 측정한 경우 낮은 전단속도에서는 뉴톤 (Newtonian) 거동을 나타내었다. PS 입자의 경우 분자량이 증가할수록 전단속도 전 영역에서 전단 묽어짐 (shear thinning) 거동을 보였다. PBMA 입자는 $170^{\circ}C$에서 점도를 측정하였으며 중량평균분자량이 156,700 g/mol 인 경우 낮은 전단속도에서만 뉴톤 거동을 나타내었다. 분자량의 증가에 따라 전단 묽어짐 거동이 관찰되었으며, 이러한 변화의 형태는 PS 입자와 유사하였다. 카본블랙을 충전제로 합성한 고분자 복합체 입자의 전단점도는 PS 및 PBMA 둘 다 $170^{\circ}C$에서 측정하였다. PS 및 PBMA 복합체 입자의 점도변화는 카본블랙의 증가에 따라 점진적으로 증가하였으나, 충전제의 증가에 따른 점도의 증가는 분자량의 증가 효과에 비교하여 미약하였다. 내부혼합기를 이용하여 제조한 카본블랙을 함유하는 PS 복합체의 점도변화는 현탁중합법으로 합성한 카본블랙을 함유하는 PS 복합체 입자의 점도변화에 비하여 작았으며 이는 향상된 분산으로 인하여 발생한 것으로 추정된다. 이 실험에서 선택한 분자량 및 카본블랙의 농도에서 yield 거동은 관찰되지 않았다.