• Title/Summary/Keyword: steady heat flow

Search Result 312, Processing Time 0.023 seconds

Heat Transfer Enhancement by Pulsating Flow in a Plate Heat Exchanger (판형 열교환기에서 맥동유동에 의한 열전달 촉진에 관한 실험적 연구)

  • Kim, Do-Kyu;Kang, Byung-Ha;Kim, Suk-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.2
    • /
    • pp.199-206
    • /
    • 2004
  • The heat transfer enhancement by pulsating flow in a plate heat exchanger has been experimentally investigated in this study. The effect of the pulsating flow, such as pulsating frequency and flow rate on the heat transfer as well as pressure drop in a plate heat exchanger has been studied in detail. Reynolds number in cold side of a plate heat exchanger is varied 100∼530 while that of hot side is fixed at 620. The pulsating frequency is considered in the range of 5∼30 Hz. The results of the pulsating flow are also compared with those of steady flow. It is found that the average heat transfer rate as well as pressure drop is increased as flow rate is increased for both steady flow and pulsating flow cases. When pulsating flow is applied to the plate heat exchanger, heat transfer could be substantially increased in particular ranges of pulsating frequency or Strouhal number; St=0.36∼0.60 and pressure drop is also increased, compared with those of steady flow. However, in the region of low pulsating frequency or high pulsating frequency, heat transfer enhancement is in meager. Heat transfer enhancement map is suggested based on Strouhal number and Reynolds number of pulsating flow.

Effects of Pulsating Flow on the Performance of a Plate Heat Exchanger (맥동유동이 판형 열교환기 성능에 미치는 영향)

  • Gang, B.H.;Kim, D.K.;Park, K.K.
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1479-1484
    • /
    • 2003
  • The heat transfer enhancement by pulsating flow in a plate heat exchanger has been experimentally investigated in this study. The effect of the pulsating flow, such as pulsating frequency and flow rate, on the heat transfer as well as pressure drop in a plate heat exchanger has been studied in detail. Reynolds number in cold side of a plate heat exchanger is varied $100{\sim}530$ while that of hot side is fixed at 620. The pulsating frequency is considered in the range of $5{\sim}30$ Hz. The results of the pulsating flow are also compared with those of steady flow. It is found that the average heat transfer rate as well as pressure drop is increased as flow rate is increased for both steady flow and pulsating flow cases. When pulsating flow is applied to the plate heat exchanger, heat transfer could be substantially increased in particular ranges of pulsating frequency or Strouhal number; $St=0.36{\sim}0.60$ and pressure drop is also increased, compared with those of steady flow.

  • PDF

Transient Critical Heat Flux Under Flow Coastdown in a Vertical Annulus With Non-Uniform Heat Flux Distribution

  • Moon, Sang-Ki;Chun, Se-Young;Park, Ki-Yong;Baek, Won-Pil
    • Nuclear Engineering and Technology
    • /
    • v.34 no.4
    • /
    • pp.382-395
    • /
    • 2002
  • An experimental study on transient critical heat flux (CHF) under flow coastdown has been performed for the water flow in a non-uniformly heated vertical annulus under low flow and a wide range of pressure conditions. The objectives of this study are to systematically investigate the effect of the flow transient on the CHF and to compare the transient CHF with steady-state CHF The transient CHF experiments have been performed for three kinds of flow transient modes based on the coastdown data of a nuclear power plant reactor coolant pump. At the same inlet subcooling, system pressure and heat flux, the effect of the initial mass flux on the critical mass flux can be negligible. However, the effect of the initial mass flux on the time-to- CHF becomes large as the heat flux decreases. The critical mass flux has the largest value for slow flow reduction rate. There is a pressure effect on the ratio of the transient CHF data to steady-state CHF data. Except under low system pressure conditions, the flow transient CHF was revealed to be conservative compared with the steady-state CHF data. Bowling CHF correlation and thermal hydraulic system code MARS show promising results for the prediction of CHF occurrence .

A NUMERICAL STUDY ON HEAT TRANSFER ENHANCEMENT BY PULSATILE FLOW IN A PLATE HEAT EXCHANGER (판형 열교환기의 맥동유동에 의한 열전달 향상에 관한 수치해석연구)

  • Lee, Myung-Sung;Hur, Nahm-Keon;Kang, Byung-Ha
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.93-96
    • /
    • 2006
  • The heat transfer enhancement by pulsatile flow in the plate heat exchanger has been investigated numerically in the present study. The numerical study was performed in the range of the mass flux from 0.04 to 0.12 kg/s. The results showed that the pulsatile flow produces resonating vortex shedding at the groove sharp edges and a strong transient vortex rotation within the grooved channels. As a result, the mixing between the trapped volume in the grooved cavity and the main stream was enhanced. Good agreements between the predictions and measured data are obtained in steady flow. And the heat transfer of pulsatile flow is about 2.4 times than steady flow when frequency is 10 Hz and the mass flux of cold side is 0.04 kg/s.

  • PDF

Numerical Solution of Steady Flow and Heat Transfer around a Rotating Circular Cylinder (가열된 회전원주를 지나는 정상유동 및 열전달해석)

  • 부정숙;이종춘
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.12
    • /
    • pp.3135-3147
    • /
    • 1993
  • A numerical method is presented which can solve the steady flow and heat transfer from a rotating and heated circular cylinder in a uniform flow for a range of Reynolds number form 5 to 100. The steady response of the flow and heat transfer is simulated for various spin parameter. The effects on the flow field and heat transfer characteristics known as lift, drag and heat transfer coefficient are analyzed and the streamlines, velocity vectors, vorticity, temperature distributions around it were scrutinized numerically. As spin parameter increases the region of separation vortex becomes smaller than upper one and the lower region will vanish. The lift force, a large part is due to the pressure force, increases as the Reynolds number and it increases linearly as spin parameter increases. The pressure coefficient changes rapidly with spin parameter on the lower surface of the cylinder and the vorticity is sensitive to the spin parameter near separation region. As spin parameter increases the maximum heat coefficient and the thin thermal layer on front region are moved to direction of rotation. However, with balance between the local increase and decrease, the overal heat transfer coefficient is almost unaffected by rotation.

Experimental Study of Natural Convection from a Slightly Inclined Cylinder with Uniform Heat Flux Immersed in Cold Pure Water (저온의 순수물속에 잠겨있는 약간 경사진 균일 열유속 원기등에 의한 자연대류의 실험적 연구)

  • 유갑종;추홍록;장우석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.7
    • /
    • pp.1799-1807
    • /
    • 1994
  • Natural convection from a slightly inclined circular cylinders immersed in quiescent cold pure water was studied experimentally. The experiment was carried out for circular cylinders with uniform heat flux ranging from $100W/m^{2} to 800 W/m^{2}$ and inclined angle ranging from horizontal $({\phi}=0^{\circ}) to 15^{\circ}$. The flow fields around cylinder were visualized and heat transfer characteristics investigated by measuring the surface temperatures for each case. As the results, it is shown that flow patterns are changed consecutively through the sequence of steady state downflow, unsteady state flow and steady state upflow with increasing heat flux. At the same inclined angle, as heat flux increases, the average Nusselt number decreases and then increases. At the same heat flux, as inclined angle increases, the average Nusselt number decreases.

Steady and Unsteady Rotating Flows between Concentric Cylinders (동심원 환내의 정상.비정상 회전 유동)

  • 심우건
    • Journal of KSNVE
    • /
    • v.7 no.4
    • /
    • pp.613-620
    • /
    • 1997
  • Steady and unsteady flows between rotating cylinders are of interest on lubrication, convective heat transfer and flow-induced vibration in large rotating machinery. Steady rotating flow is generated by rotating cylinder with constant velocity while the unsteady rotating flow by oscillating cylinder with homogeneoysly oscillating velocity. An analytical method is developed based on the simple radial coordinate transformation for the steady and unsteady rotating flows in concentric annulus. The governing equations are simplified from Navier-Stokes equatins. Considering the skin friction based on the radial variation of circumferential flow velocity, the torques acting on the fixed and the rotating cylinder are evaluated in terms of added-inertia and added-damping torque coefficients. The coefficients are found to be influenced by the oscillatory Reynolds number and the radius ratio of two cylinders; however, the effect of the oscillatory Reynolds number on the coefficients is minor in case of relatively low radius ratio.

  • PDF

Ion Slip Effect on the Flow Due to a Rotating Disk with Heat Transfer

  • Attia Hazem Ali
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.12
    • /
    • pp.2197-2202
    • /
    • 2006
  • The steady hydromagnetic flow due to a rotating disk is studied with heat transfer considering the ion slip. The governing equations are solved numerically using finite differences. The results show that the inclusion of the ion slip has important effects on the velocity distribution as well as the heat transfer.

An Analytical Investigation on the Build-up of the Temperature Field due to a Point Heat Source in Shallow Coastal Water with Oscillatory Alongshore-flow

  • Jung, Kyung-Tae;Kim, Chong-Hak;Jang, Chan-Joo;Lee, Ho-Jin;Kang, Sok-Kuh;Yjm, Ki-Dai
    • Ocean and Polar Research
    • /
    • v.25 no.1
    • /
    • pp.63-74
    • /
    • 2003
  • The build-up of the heat field in shallow coastal water due to a point source has been investigated using an analytical solution of a time-integral form derived by extending the solutions by Holley(1969) and also presented in Harleman (1971). The uniform water depth is assumed with non-isotropic turbulent dispersion. The alongshore-flow is assumed to be uni-directional, spatially uniform and oscillatory. Due to the presence of the oscillatory alongshore-flow, the heat build-up occurs in an oscillatory manner, and the excess temperature thereby fluctuates in that course and even in the quasi-steady state. A series of calculations reveal that proper choices of the decay coefficient as well as dispersion coefficients are critical to the reliable prediction of the excess temperature field. The dispersion coefficients determine the absolute values of the excess temperature and characterize the shoreline profile, particularly within the tidal excursion distance, while the decay coefficient determines the absolute value of the excess temperature and the convergence rate to that of the quasi-steady state. Within the e-folding time scale $1/k_d$ (where $k_d$ is the heat decay coefficient), heat build-up occurs more than 90% of the quasi-steady state values in a region within a tidal excursion distance (L), while occurs increasingly less the farther we go to the downstream direction (about 80% at 1.25L, and 70% at 1.5L). Calculations with onshore and offshore discharges indicate that thermal spreading in the direction of the shoreline is reduced as the shoreline constraint which controls the lateral mixing is reduced. The importance of collecting long-term records of in situ meteorological conditions and clarifying the definition of the heat loss coefficient is addressed. Interactive use of analytical and numerical modeling is recommended as a desirable way to obtain a reliable estimate of the far-field excess temperature along with extensive field measurements.

Numerical Prediction of Flow and Heat Transfer on Lubricant Supplying and Scavenging Flow Path of An Aero-engine Lubrication System

  • Liu, Zhenxia;Huang, Shengqin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.22-24
    • /
    • 2008
  • This paper presents a numerical model of internal flows in a lubricant supplying and scavenging flow path of an aero-engine lubrication system. The numerical model was built in the General Analysis Software of Aero-engine Lubrication System, GASLS, developed by Northwestern Polytechnical University. The lubricant flow flux, pressure and temperature distribution at steady state were calculated. GASLS is a general purpose computer program employed a 1-D steady state network algorithm for analyzing flowrates, pressures and temperatures in a complex flow network. All kinds of aero-engine lubrication systems can be divided into finite correlative typical elements and nodes from which the calculation network be developed in GASLS. Special emphasis is on how to use combined elements which is a type of typical elements to replace some complex components like bearing bores, accessory gearboxes or heat exchangers. This method can reduce network complexity and improve calculation efficiency. Final computational results show good agreement with experimental data.

  • PDF