• Title/Summary/Keyword: stayed-cables

Search Result 182, Processing Time 0.029 seconds

Behavior of cable-stayed bridges built over faults

  • Raftoyiannis, I.G.;Michaltsos, G.T.;Konstantakopoulos, T.G.
    • Interaction and multiscale mechanics
    • /
    • v.5 no.3
    • /
    • pp.187-210
    • /
    • 2012
  • Cable-stayed bridges are commonly used in modern bridge engineering for covering long spans. In some special cases, the designer is obliged to build such a bridge over an existing fault. Activation of this fault is possible to bring about a relative displacement or separation movement between two neighboring pylons of the bridge built on opposite sides of the fault. In this work, the effect of such a fault-induced pylon displacement on bridge's deformations and on cables' strength is thoroughly studied for several types of cable-stayed bridges and useful conclusions are drawn aiming the design. The influence of a possible earthquake and traffic loads crossing the bridge when the pylons are moving away from each other is not examined.

Optimum design of cable-stayed bridges

  • Long, Wenyi;Troitsky, Michael S.;Zielinski, Zenon A.
    • Structural Engineering and Mechanics
    • /
    • v.7 no.3
    • /
    • pp.241-257
    • /
    • 1999
  • This paper presents a procedure to minimize the cost of materials of cable-stayed bridges with composite box girder and concrete tower. Two sets of iterations are included in the proposed procedure. The first set of iteration performs the structural analysis for a cable-stayed bridge. The second set of iteration performs the optimization process. The design is formulated as a general mathematical problem with the cost of the bridge as the objective function and bending forces, shear forces, fatigue stresses, buckling and deflection as constraints. The constraints are developed based on the Canadian National Standard CAN/CSA-S6-88. The finite element method is employed to perform the complicated nonlinear structural analysis of the cable-stayed bridges. The internal penalty function method is used in the optimization process. The limit states design method is used to determine the load capacity of the bridge. A computer program written in FORTRAN 77 is developed and its validity is verified by several practical-sized designs.

Beffeting Analysis of Long Span Cable-stayed Bridge using PCCAP (PCCAP을 이용한 장대 사장교의 버페팅 해석)

  • 유원진;이석용;남효승;이완수
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.202-208
    • /
    • 2003
  • In this study, a time domain analysis is presented for investigation on the buffeting response of cable-stayed bridge during both erection and completion stages. The main span length and width of deck are 520 m and 15.1m, each. Since the ratio of span over width is 34.44, aerodynamic stability of the bridge during erection is expected to dominate the safety of the bridge in construction stage. Several conclusions regarding different construction stages and temporary wind cables are obtained.

  • PDF

Analysis of Regional Relative Humidity Environment for Dehumidification System Efficiency of Suspension Bridge Cable (현수교 케이블 송기시스템 효율화를 위한 지역별 상대습도 환경 분석)

  • Seo, Dong-Woo;Kim, Ga Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.88-94
    • /
    • 2018
  • This study examined the safety of a cable stayed bridge caused by damage to the cable system. Many cable-supported bridges, including cable-stayed bridges and suspension bridges, have been constructed on the Korean peninsula. This requires efficient maintenance and management because this structure has complex structural components and systems. This large structure also often faces risks either from manmade causes or natural phenomena. In 2015, the cables on one cable-stayed bridge in South Korea was struck by lightning, which led to a fire on the cables. These cables were damaged, which put the bridge at risk. This bridge was back in use after a few weeks of investigations and replacements of the cables but this was done at enormous social and economic expense. After this event, risk-based management for infrastructure is required by public demand. Therefore, this study examined the risks on the cable system due to potential damage. In this paper, a one cable-stayed bridge in South Korea was selected and its safety was investigated based on the damage scenarios of cable system for efficient and prompt management, and to support decision making. FEM analysis was conducted to evaluate the safety of the bridges after damage to the cable system.

Equivalent stiffness method for nonlinear analysis of stay cables

  • Xia, G.Y.;Cai, C.S.
    • Structural Engineering and Mechanics
    • /
    • v.39 no.5
    • /
    • pp.661-667
    • /
    • 2011
  • In the famous equivalent elasticity modulus method proposed by Ernst for the geometrical nonlinear analysis of stay cables, the cable shape was assumed as a parabolic curve, and only a part of the gravity load normal to the chord was taken into account with the other part of gravity load parallel to the chord being ignored. Using the actual catenary curve and considering the entire gravity load of stay cables, the present study has derived the equivalent stiffness method to analyze the sag effect of stay cables in cable-stayed bridges. The derived equivalent stiffness can be degenerated into Ernst's equivalent elasticity modulus method with some approximations. Therefore, the Ernst's method is a special and approximate formulation of the present method. The derived equivalent stiffness provides a theoretical explanation for the famous Ernst's formula.

Economic performance of cable supported bridges

  • Sun, Bin;Zhang, Liwen;Qin, Yidong;Xiao, Rucheng
    • Structural Engineering and Mechanics
    • /
    • v.59 no.4
    • /
    • pp.621-652
    • /
    • 2016
  • A new cable-supported bridge model consisting of suspension parts, self-anchored cable-stayed parts and earth-anchored cable-stayed parts is presented. The new bridge model can be used for suspension bridges, cable-stayed bridges, cable-stayed suspension bridges, and partially earth-anchored cable-stayed bridges by varying parameters. Based on the assumption that each structural member is in either an axial compressive or tensile state, and the stress in each member is equal to the allowable stress of the material, the material quantity for each component is calculated. By introducing the unit cost of each type of material, the estimation formula for the cost of the new bridge model is developed. Numerical examples show that the results from the estimation formula agree well with that from the real projects. The span limit of cable supported bridge depends on the span-to-height ratio and the density-to-strength ratio of cables. Finally, a parametric study is illustrated aiming at the relations between three key geometrical parameters and the cost of the bridge model. The optimization of the new bridge model indicates that the self-anchored cable-stayed part is always the dominant part with the consideration of either the lowest total cost or the lowest unit cost. It is advisable to combine all three mentioned structural parts in super long span cable supported bridges to achieve the most excellent economic performance.

Evaluation of Cable Impact Factor by Moving Vehicle Load Analysis in Steel Composite Cable-Stayed Bridges (차량 이동하중 해석에 의한 강합성 사장교 케이블의 충격계수 평가)

  • Park, Yong-Myung;Park, Jae-Bong;Kim, Dong-Hyun;Choi, Byung-Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.2
    • /
    • pp.199-210
    • /
    • 2011
  • The cables in cable-stayed bridges are under high stress and are very sensitive to vibration due to their small section areas compared with other members. Therefore, it is reasonable to evaluate the cable impact factor by taking into account the dynamic effect due to moving-vehicle motion. In this study, the cable impact factors were evaluated via moving-vehicle-load analysis, considering the design parameters, i.e., vehicle weight, cable model, road surface roughness, vehicle speed, longitudinal distance between vehicles. For this purpose, two steel composite cable-stayed bridges with 230- and 540-m main spans were selected. The results of the analysis were then compared with those of the influence line method that is currently being used in design practice. The road surface roughness was randomly generated based on ISO 8608, and the convergence of impact factors according to the number of generated road surfaces was evaluated to improve the reliability of the results. A9-d.o.f. tractor-trailer vehicle was used, and the vehicle motion was derived from Lagrange's equation. 3D finite element models for the selected cable-stayed bridges were constructed with truss elements having equivalent moduli for the cables, and with beam elements for the girders and the pylons. The direct integration method was used for the analysis of the bridge-vehicle interaction, and the analysis was conducted iteratively until the displacement error rate of the bridge was within the specified tolerance. It was acknowledged that the influence line method, which cannot consider the dynamic effect due to moving-vehicle motion, could underestimate the impact factors of the end-cables at the side spans, unlike moving-vehicle-load analysis.

An Elastic Parabolic Cable Element for Initial Shaping Analysis of Cable-Stayed Bridges (사장교의 초기형상해석을 위한 탄성포물선 케이블요소)

  • Kyung, Yong-Soo;Kim, Moon-Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.1
    • /
    • pp.1-7
    • /
    • 2007
  • This study introduces an elastic parabolic cable element for initial shaping analysis of cable-stayed bridges. First, an elastic catenary cable theory is shortly summarized by deriving the compatibility condition and the tangent stiffness matrices of the elastic catenary cable element. Next, the force-deformation relations and the tangent stiffness matrices of the elastic parabolic cable elements are derived from the assumption that sag configuration under self-weights is small. In addition the equivalent cable tension is defined in the chord-wise direction. Finally, to confirm the accuracy of this element, initial shaping analysis of cable-stayed bridges under dead loads is executed using TCUD in which stay cables are modeled by an elastic parabolic cable and an elastic catenary cable element, respectively. Resultantly it turns that unstrained lengths of stay cables, the equivalent cable tensions, and maximum tensions by the parabolic cable element are nearly the same as those by the catenary cable elements.

Nonlinear dynamic performance of long-span cable-stayed bridge under traffic and wind

  • Han, Wanshui;Ma, Lin;Cai, C.S.;Chen, Suren;Wu, Jun
    • Wind and Structures
    • /
    • v.20 no.2
    • /
    • pp.249-274
    • /
    • 2015
  • Long-span cable-stayed bridges exhibit some features which are more critical than typical long span bridges such as geometric and aerodynamic nonlinearities, higher probability of the presence of multiple vehicles on the bridge, and more significant influence of wind loads acting on the ultra high pylon and super long cables. A three-dimensional nonlinear fully-coupled analytical model is developed in this study to improve the dynamic performance prediction of long cable-stayed bridges under combined traffic and wind loads. The modified spectral representation method is introduced to simulate the fluctuating wind field of all the components of the whole bridge simultaneously with high accuracy and efficiency. Then, the aerostatic and aerodynamic wind forces acting on the whole bridge including the bridge deck, pylon, cables and even piers are all derived. The cellular automation method is applied to simulate the stochastic traffic flow which can reflect the real traffic properties on the long span bridge such as lane changing, acceleration, or deceleration. The dynamic interaction between vehicles and the bridge depends on both the geometrical and mechanical relationships between the wheels of vehicles and the contact points on the bridge deck. Nonlinear properties such as geometric nonlinearity and aerodynamic nonlinearity are fully considered. The equations of motion of the coupled wind-traffic-bridge system are derived and solved with a nonlinear separate iteration method which can considerably improve the calculation efficiency. A long cable-stayed bridge, Sutong Bridge across the Yangze River in China, is selected as a numerical example to demonstrate the dynamic interaction of the coupled system. The influences of the whole bridge wind field as well as the geometric and aerodynamic nonlinearities on the responses of the wind-traffic-bridge system are discussed.

Investigation on deck-stay interaction of cable-stayed bridges with appropriate initial shapes

  • Liu, Ming-Yi;Lin, Li-Chin;Wang, Pao-Hsii
    • Structural Engineering and Mechanics
    • /
    • v.43 no.5
    • /
    • pp.691-709
    • /
    • 2012
  • This paper provides a variety of viewpoints to illustrate the mechanism of the deck-stay interaction with the appropriate initial shapes of cable-stayed bridges. Based on the smooth and convergent bridge shapes obtained by the initial shape analysis, the one-element cable system (OECS) and multi-element cable system (MECS) models of the Kao Ping Hsi Bridge in Taiwan are developed to verify the applicability of the analytical model and numerical formulation from the field observations in the authors' previous work. For this purpose, the modal analysis of the two finite element models are conducted to calculate the natural frequency and normalized mode shape of the individual modes of the bridge. The modal coupling assessment is also performed to obtain the generalized mass ratios among the structural components for each mode of the bridge. The findings indicate that the coupled modes are attributed to the frequency loci veering and mode localization when the "pure" deck-tower frequency and the "pure" stay cable frequency approach one another, implying that the mode shapes of such coupled modes are simply different from those of the deck-tower system or stay cables alone. The distribution of the generalized mass ratios between the deck-tower system and stay cables are useful indices for quantitatively assessing the degree of coupling for each mode. These results are demonstrated to fully understand the mechanism of the deck-stay interaction with the appropriate initial shapes of cable-stayed bridges.