• Title/Summary/Keyword: stayed-cables

Search Result 184, Processing Time 0.023 seconds

An evaluation system for determining the stress redistribution of a steel cable-stayed bridge due to cable stress relaxation at various temperatures

  • Tien-Thang Hong;Duc-Kien Thai;Seung-Eock Kim
    • Steel and Composite Structures
    • /
    • v.46 no.6
    • /
    • pp.805-821
    • /
    • 2023
  • This study developed an evaluation system to explore the effect of the environmental temperature on the stress redistribution produced by cable stress relaxation of structural members in a steel cable-stayed bridge. The generalized Maxwell model is used to estimate stress relaxation at different temperatures. The environmental temperature is represented using the thermal coefficients and temperature loads. The fmincon optimization function is used to determine the set of stress relaxation parameters at different temperatures for all cables. The ABAQUS software is employed to investigate the stress redistribution of the steel cable-stayed bridge caused by the cable stress relaxation and the environmental temperature. All of these steps are set up as an evaluation system to save time and ensure the accuracy of the study results. The developed evaluation system is then employed to investigate the effect of environmental temperature and cable type on stress redistribution. These studies' findings show that as environmental temperatures increased up to 40 ℃, the redistribution rate increased by up to 34.9% in some girders. The results also show that the cable type with low relaxation rates should be used in high environmental temperature areas to minimize the effect of cable stress relaxation.

Optimization of Cable Stayed Bridges Considering Initial Cable Tension and Tower Coordinates (사장교의 초기인장력과 주탑좌표를 고려한 최적설계)

  • Kim, Kyung Seung;Kim, Moon Kyum;Hwang, Hak Joo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.2
    • /
    • pp.205-213
    • /
    • 1988
  • It is not a simple task to optimize a cable stayed bridge, because it involves, in addition to the section properties, number and arrangement of cables, initial tension forces of cables, and type and height of the tower as design variables. This study deals with an optimization problem of cable stayed bridges considering initial cable forces, section properties of the girder and the tower, and coordinates of the tower. In order to avoid difficulties in dealing with numerous variables which interact mutually, separate design spaces are adopted for initial cable forces, section properties, and coordinates, respectively. Strain energy stored in the structure is used as the object function in the design of the initial cable forces, while weight of the structure is used in the design of section and coordinates. Upper and lower limits of the initial forces, allowable stresses including the effect of buckling, and lower limit of the sectional area are considered as constraints. The proposed method is applied to a fan type bridge and a harp type bridge. It is believed through comparison of the results to the previous results in the literature that the proposed method renders rational design values. It is also shown that the coordinate optimization, which is usually deleted in the optimization process, results in additional saving of materials.

  • PDF

Field Application of a Cable NDT System for Cable-Stayed Bridge Using MFL Sensors Integrated Climbing Robot (누설자속센서를 탑재시킨 이동로봇을 이용한 사장교 케이블 비파괴검사 시스템의 현장 적용)

  • Kim, Ju-Won;Choi, Jun-Sung;Lee, Eun-Chan;Park, Seung-Hee
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.1
    • /
    • pp.60-67
    • /
    • 2014
  • In this study, an automated cable non-destructive testing(NDT) system was developed to monitor the steel cables that are a core component of cable-stayed bridges. The magnetic flux leakage(MFL) method, which is suitable for ferromagnetic continuum structures and has been verified in previous studies, was applied to the cable inspection. A multi-channel MFL sensor head was fabricated using hall sensors and permanent magnets. A wheel-based cable climbing robot was fabricated to improve the accessibility to the cables, and operating software was developed to monitor the MFL-based NDT research and control the climbing robot. Remote data transmission and robot control were realized by applying wireless LAN communication. Finally, the developed element techniques were integrated into an MFL-based cable NDT system, and the field applicability of this system was verified through a field test at Seohae Bridge, which is a typical cable-stayed bridge currently in operation.

Vibration Reduction Effects of Stay Cable Due to Friction Damper (마찰댐퍼에 의한 사장 케이블의 진동저감 효과)

  • Kim, Hyung Ku;Yhim, Sung Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.2
    • /
    • pp.54-61
    • /
    • 2013
  • Stay cable has a strong axial rigidity due to large initial tension and, on the other hand, it has a weak laterally flexural rigidity. Wind loads or traffic loads cause the cables to vibrate significantly and affect the mechanical properties and the performance of cables of cable-stayed bridge (CSB). Therefore, the development of vibration reduction design is an urgent task to control the vibration vulnerable long-span bridges. As Friction damper (FD) shows to reduce the amplitude and duration time of vibration of cable of CSB from measured date in field test, friction damper can be considered that it is effective device significantly to reduce the amplitude and duration time in vibration of cable of CSB under traffic load, wind load and so on. Vibration characteristics of cable can change according to manufacturing method and type of established form. Nevertheless, analysis method in this study can present the design of friction damper for vibration reduction of cable of cable-stayed bridge from now on.

Vibrational Characteristics on the Cables in Cable Stayed Bridge (사장교 케이블의 진동거동 특성)

  • Sung, Ikhyun
    • Journal of the Society of Disaster Information
    • /
    • v.13 no.2
    • /
    • pp.249-257
    • /
    • 2017
  • Recently, a cable disconnection accident occurred due to a lightning strike at the Seohae Bridge located in Dangjin-Pyeongtaek City. This is a natural occurrence, but it is a recall that it is very important to review the safety issues due to the disconnection of cable bridges. In other words, the role of cables in cable bridges has a profound effect on the safety of the structure, and it has become necessary to grasp the effect on the entire structural system. The cable bridge is an economic bridge that builds the main tower and supports the bottom plate by cable. The influence of the cable is the main member, which is a big influence on the safety of the whole bridge system. In the cable-stayed bridge, the cables exhibit nonlinear behavior because of the change in sag, due to the dead weight of the cable, which occurs with changing tension in the cable resulting from the movement of the end points of the cable as the bridge is loaded. Modal analysis is conducted using the deformed dead-load tangent stiffness matrix. A new concept was presented by using divided a cable into several elements in order to study the effect of the cable vibration (both in-plane and swinging) on the overall bridge dynamics. The result of this study demonstrates the importance of cable vibration on the overall bridge dynamics.

Load-carrying Capacities of Safety Structures on Wind-resistant Analyses of Cable-stayed Bridge (사장교의 내풍해석을 통한 인명보호 구조물의 내하능력평가)

  • Huh, Taik-Nyung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.4_2
    • /
    • pp.587-594
    • /
    • 2022
  • In the 2000s, a lot of cable-type grand bridges are being built in consideration of economic aspects such as the reduction of logistics costs and the distribution of traffic volume due to rapid economic development. In addition, because the recently installed grand bridges are designed in an aesthetic form that matches the surrounding environment as well as the original function of the road bridge, and serves as a milestone in an area and is used as an excellent tourism resource, attracting many vehicles and people, there is an urgent need for a safety structure that can ensure the safety of not only vehicles but also people. In order to make cable-stayed bridge safe on wind for additional five safety structures, main girder models with and without safety structures for wind-tunnel experiments was made, and wind tunnel experiments was carried out to measure aerodynamic force coefficients. Also, wind-resistant analyses of 3D cable-stayed bridge were performed on the basis of wind-tunnel experiment results. From the wind tunnel experiments for the aerodynamic force coefficients of main girder with five safety structures and the wind resistant analyses of cable-stayed bridge without safety structure and with safety structure, it was concluded that the best form of wind-resistant safety was shown in the order of mesh, standard, bracing, hollow, and closed type. And wind-resistant safety of cable-stayed bridge with hollow and closed type on design wind speed 68.0m/sec was not secured. Finally, as five safety structures are installed, maximum rate of stress increments was shown in the order of steel main beam, steel floor beam, concrete floor beam and cables.

Construction Stage Analysis of Extradosed PSC Box Bridges (Extradosed PSC Box 교의 시공단계해석)

  • 윤군진;이완수;이종신;김성찬
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.347-354
    • /
    • 2001
  • Extradosed PSC Box bridges, newly emerging type of structures in construction market, have a characteristic in that external tendons are used for strengthening PSC Box girder like stay cables in cable stayed bridges. In this study, a series of constructions stage analysis procedure, including initial shape analysis, backward analysis and forward analysis, have been performed in order to investigate long-term behavior of extradosed PSC box bridges, using PCCAP-a computer program for time-dependent stage analysis of PSC cable stayed bridges. CEB-FIP 1978 model was used for the consideration of time-dependent effect of concrete material. Showing the validity of the analysis results with RM SPACE FRAME, it has been confirmd that time-dependent effects become less consequential as the stiffness of girder becomes larger.

  • PDF

A Study on the Dynamic Behavior a 3 Span Continuous Extradosed PSC Railway Bridge (3경간 연속 Extradosed PSC 철도교의 동적거동에 관한 연구)

  • Kim, Sung-Il;Kim, Yun-Tae;Gill, Tae-Soo
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.2 s.33
    • /
    • pp.137-144
    • /
    • 2006
  • The Extradosed PSC bridge is one of the best alternates which not only covers the longer span than PSC box girder and also performs the role of landmark facility with much cheaper cost than cable stayed bridge. Since the cable-stayed long span bridge is more flexible than general medium span bridges and railway bridges can be experienced resonance phenomenon by repeated equidistant axle loading of the train, it is inevitable to consider the dynamic behavior on impact, deflection and so on. In the present study, the dynamic behavior of an Extradosed PSC railway bridge subjected to moving train forces is analyzed. As well as trains which operate in conventional railway tines, KTX train is also considered. For the estimation of dynamic performances of the Extradosed PSC bridge, vertical deflection, accelerations of the slab, end rotation of the girder and impact on pylons and cables are discussed.

Modeling of rain-wind induced vibrations

  • Peil, Udo;Nahrath, Niklas
    • Wind and Structures
    • /
    • v.6 no.1
    • /
    • pp.41-52
    • /
    • 2003
  • Rain-wind induced vibrations of cables are a challenging problem in the design of cable-stayed bridges. The precise excitation mechanism of the complex interaction between structure, wind and rain is still unknown. A theoretical model that is able to accurately simulate the observed phenomena is not available. This paper presents a mathematical model describing rain-wind induced vibrations as movement-induced vibrations using the quasi-steady strip theory. Both, the vibrations of the cable and the movement of the water rivulet on the cable surface can be described by the model including all geometrical and physical nonlinearities. The analysis using the stability and bifurcation theory shows that the model is capable of simulating the basic phenomena of the vibrations, such as dependence of wind velocity and cable damping. The results agree well with field data and wind tunnel tests. An extensive experimental study is currently performed to calibrate the parameters of the model.

Nonlinear Analysis of Segmentally Erected Prestressed Concrete Cable-Stayed Bridges (시공단계를 고려한 프리스트레스트 콘크리트 사장교의 비선형 해석)

  • Lee, Jae Seok;Kang, Young Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.1
    • /
    • pp.49-62
    • /
    • 1994
  • An analysis method for the time-dependent nonlinear analysis of segmentally erected planar prestressed concrete cable-stayed bridges was described. To account for the time-dependent effects, load history, creep, shrinkage. aging of concrete and relaxation of prestress were considered. Changes in boundary conditions and loads, installing and removing frame elements, stressing, restressing and removing cables and prestressing tendons were incorporated for modeling segmental erection operations. One typical example on segmentally erected prestressed concrete cable-stayed bridge was presented to illustrate the analysis method. Results of this example show that it is important to follow the development of stresses and deformations at all stages of construction to predict the true response of the bridge through its various load history.

  • PDF