• Title/Summary/Keyword: stator current

Search Result 684, Processing Time 0.027 seconds

Design and Characteristic Analysis Method of LOA (리니어 진동액튜에이터(LOA)의 설계 및 특성 해석법)

  • Jang, S.M.;Park, C.I.;Park, H.C.;Son, Y.S.;Kim, H.G.;Seo, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.177-179
    • /
    • 1995
  • The hybrid type LOA is electric machine which reciprocates the mover by thrust force produced by interaction of flux between coil current and permanent magnet. In this paper, the shape of LOA is designed conceptually and calculating algorithm of leakage inductance in the stator slot and magnetizing inductance between stator and mover is obtained. Using the conceptually designed LOA, the change of flux distribution is studied in consideration with movement of a mover.

  • PDF

Polarity discrimination of stator windings for 3 phase induction motors by using DC differential signals between mutual inductive voltages (유도기전력의 차동신호를 이용한 3상유도전동기 고정자 권선의 극성판별)

  • Choi, Soon-Man
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.9
    • /
    • pp.1141-1145
    • /
    • 2014
  • When the stator windings of 3 phase induction motors are in wrong condition, the mutual inductive responses between windings can be utilized for the purpose of diagnosing motors in that fault windings affect even the responses by DC excitation. Three phase induction motors are supposed to generate consistent inductive voltages at the remaining windings when exciting DC current is given to one of 3 windings, while the inconsistence of their voltages indicates the existence of disorder at electric motors. This study describes how the exciting current to one of three windings cause the other windings to create induced voltages, analyzing responses by transfer functions, and discloses whether or not the balance relation at two windings is normal in the way of measuring the differential voltage of their outputs. For experiment, common analog multi-testers is used for applying exciting current and measuring the output signal to confirm whether the proposed method is useful enough to be able to discriminate wrong polarities of windings onboard vessels including also the case of exciting current by AC.

Performances of Current-Waveform Modulated Single-Phase Induction Machine (전류파형을 변조한 단상유도전동기구의 특성에 관한 연구)

  • 황영문;김철우;박용규
    • 전기의세계
    • /
    • v.24 no.1
    • /
    • pp.55-62
    • /
    • 1975
  • A single-phase induction motor with it's stator winding splitted into two series windings, of which the terminals of one winding is switched pulsationally by a thyristor type ON-OFF device so that the motor may operate as a pulsational shaded-pole motor, can modulate current waveforms of it's two series windings. In view of current waveform modulation method, a single-phase single-winding motor operates as a two-phase induction motor with asymmetrical axis windings where the starting torque can be obtained effectively without an auxiliary capacitor attached and it's running speed controlled by shifting phase between current waveforms differently. Equivalent circuit for analysis is modified from a double revolving field equivalent circuit of a single-phase induction motor with asymmetrical windings whose angle is 45.deg.C elet. degrees. Analysis and test results show that ON-OFF action of the pulsational shaded-pole winding has the same effect of a series capacitor, and then at heavy loads this motor operates with a small amonut of the input current than that having the fixed shaded-pole winding.

  • PDF

High Performance Current Control Scheme of IPM Motors with Physical Limitation of Stator Voltages (전압 제한을 고려한 매입형 영구자석 전동기의 고성능 전류 제어)

  • Lee, Joo-Young;Ahn, Byoung-Gyo;Ha, In-Joong;Song, In-Seong
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.72-76
    • /
    • 1997
  • Interior permanent magnet synchronous motors can be applied to applications requiring wide-speed operation. The current control scheme of an interior permanent magnet synchronous (IPM) motor via feedback linearizing technique is proposed. As the available voltage controlling the armature current is small in transient operations and/or flux-weakening region, the current control performance can be deteriorated. The high performance overmodulation strategy is also proposed to improve the current responses. The control performances are confirmed by simulations.

  • PDF

MODELING OF A REPULSIVE TYPE MAGNETIC BEARING FOR FIVE AXIS CONTROL INCLUDING EDDY CURRENT EFFECT

  • Ohji, T.;Mukhopadhyay, S.C.;Iwahara, M.;Yamada, S.
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.625-629
    • /
    • 1998
  • So far a single-axis controlled repulsive type magnetic bearing system have been designed and fabricated in our laboratory employing the repulsive forces operating between the stator and rotor permanent magnet for levitation. The radial axis is uncontrolled passive one. The higher speed of operation is limited due to the vibration along the uncontrolled axis and the increase of control current due to eddy current interference. This paper will discuss a detailed modeling of the repulsive type magnetic bearing system for five axis control including the eddy current effect and the method of reduction of eddy current effect. Simulation results using Matlab will be presented.

  • PDF

Indirect Vector Control for Induction Motor using ANFIS Parameter Estimator (적응 뉴로-퍼지 파라미터 추정기를 이용한 유도전동기의 간접벡터제어)

  • Kim, Jong-Hong;Kim, Dae-Jun;Choi, Young-Kiu
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2374-2376
    • /
    • 2000
  • In this paper, we propose an indirect vector control method using Adaptive Neuro-Fuzzy Inference System (ANFIS) parameter estimator. It estimates the rotor time constant when the indirect vector control of induction motor is applied. We use the stator current error that is difference between the current command and estimated current calculated from terminal voltage and current. And two induced current estimate equations are used in training ANFIS.The estimator is trained by the hybrid learning algorithm. Simulation results shows good performance under load disturbance and motor parameter variations.

  • PDF

A Novel Discrete predictive current control for PM-LSM (PM-LSM에 대한 새로운 예측 전류 제어)

  • Sun Jung-Won;Suh Jin-Ho;Lee Young Jin;Lee Kwon-Soon
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1220-1222
    • /
    • 2004
  • In this paper, we propose a new discrete-time predictive current controller for a PM-LSM(permanent magnet linear synchronous motor). The main objectives of the current controllers are to ensure that the measured stator currents tract the command values accurately and to shorten the transient interval as much as possible, in order to obtain high-performance of ac drive system. A new control strategy is seen the scheme that gets the fast adaptation of transient current change, the fast transient response tracking and is proposed simplified calculation. Moreover, the simulation results will be verified the improvements of predictive controller and accuracy of the current controller.

  • PDF

A New Current Control Algorithm for Torque Ripple Reduction of BLDC Motors (BLDC 전동기의 토크리플 저감을 위한 새로운 전류제어 알고리즘에 대한 연구)

  • Kim Tae-Sung;Ahn Sung-Chan;Hyun Dong-Seok
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.25-29
    • /
    • 2001
  • The BLDCM (Brushless DC Motor) characterized by linear torque to current, and speed to voltage has low acoustic noise, and fast dynamic response. Moreover, it has high power density with high proportion of torque to inertia in spite of small size drive. But, it produce torque ripple due to the motor inductance components in stator windings and back-EMF, when armature current is commutated. Therefore, it is difficult to apply the BLDCM to a precision servo drive system. In this paper is proposed to a new current control algorithm with using fourier series coefficients can minimize torque ripple due to the phase current commutation of BLDCM. Simulation and Experimental results prove the effectiveness the proposed algorithm through comparison with the conventional used unipolar PWM method.

  • PDF

Direct Torque Control System of a Reluctance Synchronous Motor Using a Neural Network

  • Kim Min-Huei
    • Journal of Power Electronics
    • /
    • v.5 no.1
    • /
    • pp.36-44
    • /
    • 2005
  • This paper presents an implementation of high performance control of a reluctance synchronous motor (RSM) using a neural network with a direct torque control. The equivalent circuit in a RSM, which considers iron losses, is theoretically analyzed. Also, the optimal current ratio between torque current and exiting current is analytically derived. In the case of a RSM, unlike an induction motor, torque dynamics can only be maintained by controlling the flux level because torque is directly proportional to the stator current. The neural network is used to efficiently drive the RSM. The TMS320C3l is employed as a control driver to implement complex control algorithms. The experimental results are presented to validate the applicability of the proposed method. The developed control system shows high efficiency and good dynamic response features for a 1.0 [kW] RSM having a 2.57 ratio of d/q.

Simplified Impedance Modeling and Analysis for Inter-Turn Fault of IPM-type BLDC motor

  • Kim, Byeong-Woo;Kim, Kyung-Tae;Hur, Jin
    • Journal of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.10-18
    • /
    • 2012
  • This paper proposes a finite element method (FEM)-based model of an interior permanent magnet (IPM)-type BLDC motor having stator inter-turn faults. We also propose impedance modeling of the magnetic characteristics. By integrating the developed model with a current-controlled voltage source inverter (CCVSI) model, the distributed characteristics of an inter-turn fault operated by a six-switch inverter are investigated considering speed control. Moreover, this paper presents the flux density distribution and torque characteristics for analyzing the inter-turn fault of an IPM-type BLDC motor. Additionally, fault impedance is required to calculate the circulating current that causes magnetic distortion. Thus, this paper proposes a method for estimating the circulating current taking into account the voltage at the shorted turn and the rotating speed. The analysis data were verified experimentally.