• Title/Summary/Keyword: stator current

Search Result 684, Processing Time 0.021 seconds

A Study on the Polarity Discrimination Method of the Stator Windings for 3 Phase Induction Motors based on the Residual Magnetism and I Winding Connection (잔류자기와 I 결선에 의한 3상유도전동기 고정자 권선의 극성판별법에 대한 연구)

  • Choi, Soon-Man
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.1
    • /
    • pp.72-77
    • /
    • 2015
  • When connecting 6 lead wires from stator windings to the terminals of 3 phase induction motors for Y or ${\triangle}$ connection, it is feared that the polarities of windings could be reversed each other if the wire tags are lost or erased, resulting in inadmissibly high current to motors in case of starting. To protect motors against such situations, some test procedures are necessary during wire connection which need to be easy ways to electricians without particular tools except a general multi-tester and with less time-consuming in the field. This study focuses on a test measure to satisfy these requirements which is able to provide them a convenient procedure for winding polarity discrimination considering the field condition. Here, the proposed measure utilizes the residual magnetism of the rotor and checks the indication of voltage or current at windings which are induced by the residual flux of rotor when rotating it by hands with 3 stator windings connected in the form of I connection. Principle characteristics and experiment results for this method are analyzed in the view of the effectiveness and applicability for the winding polarity discrimination.

Dynamic Analysis Algorithm of Irreversible Demagnetization of IPM-type Brushless DC Motor by Stator Turn Fault (고정자 절연파괴 고장에 의한 매입형 영구자석 BLDC 모터의 불가역 감자에 대한 동적해석 알고리즘)

  • Lee, Yoon-Seok;Kim, Kyung-Tae;Hur, Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.12
    • /
    • pp.1661-1667
    • /
    • 2013
  • This paper studies the dynamic irreversible demagnetization characteristics of an interior permanent magnet (PM) brushless DC motor with a stator turn fault. A new algorithm, which is a finite element method (FEM) combined with a line voltage equation of the motor, is developed to analyze irreversible demagnetization under dynamic and transient states and considers a stator turn fault. The input current, circulating current, magnetic distribution characteristics, and operating property of the PM, including the irreversible demagnetization in the fault state, are analyzed using this algorithm by considering the magnetic saturation effect. The feasibility of the proposed method confirmed from the analysis results is verified via an experiment. Through this fault analysis, we can accurately check the fault phenomena of a PM motor against the demagnetization fault for fault prevention.

A Robust MRAC-based Speed Estimation Method to Improve the Performance of Sensorless Induction Motor Drive System in Low Speed (저속영역에서 센서리스 벡터제어 유도전동기의 성능을 향상시키기 위한 MRAC 기반의 강인한 속도 추정 기법)

  • 박철우;권우현
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.1
    • /
    • pp.37-46
    • /
    • 2004
  • A novel rotor speed estimation method using model reference adaptive control(MRAC) is proposed to improve the performance of a sensorless vector controller. In the proposed method, the stator current is used as the model variable for estimating the speed. In conventional MRAC methods, the relation between the two model errors and the speed estimation error is unclear. In the proposed method, the stator current error is represented as a function of the first degree for the error value in the speed estimation. Therefore, the proposed method can produce a fast speed estimation. The robustness of the rotor flux-based MRAC, back EMF-based MRAC, and proposed MRAC is compared based on a sensitivity function about each error of stator resistance, rotor time constant, mutual inductance. Consequently, the proposed method is much more robust than the conventional methods as regards errors in the mutual inductance, stator resistance. Therefore, the proposed method offers a considerable improvement in the performance of a sensorless vector controller at a low speed. In addition, the superiority of the proposed method and the validity of sensitivity functions were verified by simulation and experiment.

Analysis of the Temperature Influence on Insulation Characteristics in High Voltage Motor Stator Windings (고압전동기 고정자 권선의 온도변화에 따른 절연특성 분석)

  • Kong, Tae-Sik;Ju, Young-Ho;Kim, Hee-Dong;Park, Tae-Sung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.10
    • /
    • pp.786-790
    • /
    • 2012
  • A variety of diagnostic tests are widely applied in the field in industry to evaluate the condition of high voltage (HV) motor stator insulation. In this paper, the influence of temperature on the stator insulation diagnostic tests such as the insulation resistance, AC current, dissipation factor, and partial discharge measurements are studied and reported. The tests are performed with the HV motor stator winding temperature set between $40^{\circ}C$ to $80^{\circ}C$ in $10^{\circ}C$ intervals. It is shown that the AC current, dissipation factor, and partial discharge magnitude steadily increase with temperature, which suggests that temperature must be taken into account in the interpretation of the test results.

Reducing the Thrust Ripple Generated by the Stacking of Stator Phase Windings of a Linear Pulse Motor (리니어 펄스모터의 고정자 상권선 적층에 따른 추력 리플 저감 기법 연구)

  • Choi, Jaehuyk;Zun, Chanyong;Mok, Hyungsoo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.2
    • /
    • pp.447-452
    • /
    • 2017
  • The stator phase winding of a linear pulse motor, which is a new type of linear motor, is comprised of two phases and is structurally characterized by a stacking method in which the winding of one phase is laid on top of the winding of another phase. Such a structural characteristic induces a difference in the flux linkage resulting from the flux of each stator phase winding in the same condition. The difference in the induced flux linkage acts as a kind of thrust ripple component in terms of the generated thrust. Thus, in order to maintain consistent thrust force, a method is required to solve the problem caused by the structural singularity. Hence, in this study, we present a technique for reducing the thrust force ripple generated by the stacking of the stator phase windings of a linear pulse motor through the generation of a compensating current reference value of the current controller in order to keep the torque constant. The proposed compensating algorithm is validated by simulations and experimental results.

An Enhanced Finite-Settling-Step Direct Torque and Flux Control (FSS-DTFC) for IPMSM Drives

  • Kim, Sehwan;Seok, Jul-Ki
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1367-1374
    • /
    • 2016
  • This paper presents a discrete-time version of voltage and current limited operation using an enhanced direct torque and flux control method for interior permanent magnet synchronous motor (IPMSM) drives. A command voltage vector for airgap torque and stator flux regulation can be uniquely determined by the finite-settling-step direct torque and flux control (FSS-DTFC) algorithm under physical constraints. The proposed command voltage vector trajectories can be developed to achieve the maximum inverter voltage utilization for the discrete-time current limit (DTCL)-based FSS-DTFC. The algorithm can produce adequate results over a number of the potential secondary upsets found in the steady-state current limit (SSCL)-based DTFC. The fast changes in the torque and stator flux linkage improve the dynamic responses significantly over a wide constant-power operating region. The control strategy was evaluated on a 900W IPMSM in both simulations and experiments.

Performance Analysis of the Eddy Current Braker with Multi-layer Rotor Considering Constant Braking Torque

  • Kim, Cherl-Jin;Lee, Kwan-Yong;Han, Kyoung-Hee;Beak, Soo-Hyun
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.4B no.2
    • /
    • pp.59-64
    • /
    • 2004
  • Study of an accurate and robust braking control method is required as a technical improvement to the servo system. In particular, the braker exhibiting constant braking performance under speed variation conditions of the prime mover needs to be investigated. In this paper, the braking torque of the eddy current braker between the electromagnet stator and rotating disk is analyzed. The torque-speed characteristics and accurate disk construction are represented. From the computer simulation results, it was found that eddy current braking torque is linear or approximately constant over the desired speed range depending on the rotor material, disk construction, pole number and pole displacement of the stator. These relations are confirmed by experimental results.

Compensation of the Rotor Time Constant of Induction Motor using Stator Current Error (고정자 전류오차를 이용한 유도전동기 회전자 시정수보상)

  • 이무영;김승민;윤경섭;구본호;권우현
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.5
    • /
    • pp.585-591
    • /
    • 1998
  • It is proposed a new compensation method in the rotor time constant of indirect vector controlled induction motor. The proposed scheme is an on-line method using the stator current error that is the difference between current command and estimated current calculated from terminal voltages and currents. As the current error becomes to zero, the rotor time constant in the vector controller approaches the real value. The proposed method shows good performances in the transient region as well as in the steady state region regardless of load torque variation, and it is verified by the computer simulation using SIMULINK in Matlab.

  • PDF

A Development of the Algorithm to Detect the Fault of the Induction Motor Using Motor Current Signature Analysis (전류분석을 이용한 유도 전동기의 결함분석 알고리듬 개발)

  • 신대철;정병훈
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.8
    • /
    • pp.675-683
    • /
    • 2004
  • The motor current signature provides an important source of the information for the faults diagnosis of three-phase induction motor. The theoretical principles behind the generation of unique signal characteristics, which are indicative of failure mechanisms, are Presented. The fault detection techniques that can be used to diagnose mechanical Problems, stator and rotor winding failure mechanisms, and air-gap eccentricity are described. A theoretical analysis is presented which predicts the presence of unique signature patterns in the current that are only characteristics of the fault. The predictions are verified by experimental results from a special fault Producing test rig and on-site tests in a steel company. And this study have made new diagnostic algorithm for the operating induction motors with the test results. These developments are including the use of monitoring and analysis of electric current to diagnose mechanical and electrical problems and gave the precise test results automatically.

A novel neans of selecting stator voltage vector for current-controlled ac servo drives (전류제어 교류서어보 구동장치를 위한 고정자 전압벡터의 새로운 선택 방법)

  • Lee, Kwang-Won;Park, Song-Bai
    • Proceedings of the KIEE Conference
    • /
    • 1987.07a
    • /
    • pp.797-800
    • /
    • 1987
  • A new current control scheme is suggest.ed which is suitable for ac servo inverter drives. The scheme uses a simple block diagram to produce the reference stator voltage vector, and the vector nearest to it is chosen for switching. With the same arrangment three kinds of operation modes are possible : (1) constant rate sampling, (2) constant current deviation, (3) adaptive current deviation. In mode (1) current deviation after one period is minimized, while in mode (2) and (3) intervals between switchings are maximized.

  • PDF