• 제목/요약/키워드: statistical wind field model

검색결과 23건 처리시간 0.023초

통계적 바람장모형에의한 고해상도(1Km×1Km)풍력에너지지도 작성에 관한 연구 (The Establishment of a High Resolution(1Km×1Km) Wind Energy Map Based on a Statistical Wind Field Model)

  • 김혜중;김현식;최영진;변재영
    • 응용통계연구
    • /
    • 제23권6호
    • /
    • pp.1157-1167
    • /
    • 2010
  • 본 논문은 남한지역 풍력자원의 계량화 및 바람환경분석 등에 필요한 풍력에너지지도를 고해상도로 작성하는 방법을 제안하였다. 이를 위해 $1Km{\times}1Km$ 격자로 나누어진 남한전역(345,682 지점)의 월별풍속에 적합한 통계적 바람장모형을 설정하여 각종 풍력에너지통계를 $1Km{\times}1Km$ 격자지점 별로 계산하고, 통계값들를 지도로 구현하는 절차를 연구하였다. 바람장모형의 적합성검정에는 국내 76개 기상관측소에서 관측된 TMY (typical meteorological year) 바람자료가 사용되었으며, Kolmogrov-Smirnov 검정결과 로그정규모형이 남한지역의 월별 바람장모형에 적합하였다. 또한 로그정규모형 하에서 얻어지는 다양한 형태의 풍력에너지통계들을 소개하였으며, 국립기상연구소가 제공하는 $1Km{\times}1Km$ 격자지점(345,682 지점)의 풍속자료를 사용하여 남한(지상 80m)의 풍력에너지밀도(W/$m^2$)지도를 공간분포도 형태로 작성해 보였다.

Bayesian Typhoon Track Prediction Using Wind Vector Data

  • Han, Minkyu;Lee, Jaeyong
    • Communications for Statistical Applications and Methods
    • /
    • 제22권3호
    • /
    • pp.241-253
    • /
    • 2015
  • In this paper we predict the track of typhoons using a Bayesian principal component regression model based on wind field data. Data is obtained at each time point and we applied the Bayesian principal component regression model to conduct the track prediction based on the time point. Based on regression model, we applied to variable selection prior and two kinds of prior distribution; normal and Laplace distribution. We show prediction results based on Bayesian Model Averaging (BMA) estimator and Median Probability Model (MPM) estimator. We analysis 8 typhoons in 2006 using data obtained from previous 6 years (2000-2005). We compare our prediction results with a moving-nest typhoon model (MTM) proposed by the Korea Meteorological Administration. We posit that is possible to predict the track of a typhoon accurately using only a statistical model and without a dynamical model.

SHM-based probabilistic representation of wind properties: statistical analysis and bivariate modeling

  • Ye, X.W.;Yuan, L.;Xi, P.S.;Liu, H.
    • Smart Structures and Systems
    • /
    • 제21권5호
    • /
    • pp.591-600
    • /
    • 2018
  • The probabilistic characterization of wind field characteristics is a significant task for fatigue reliability assessment of long-span railway bridges in wind-prone regions. In consideration of the effect of wind direction, the stochastic properties of wind field should be represented by a bivariate statistical model of wind speed and direction. This paper presents the construction of the bivariate model of wind speed and direction at the site of a railway arch bridge by use of the long-term structural health monitoring (SHM) data. The wind characteristics are derived by analyzing the real-time wind monitoring data, such as the mean wind speed and direction, turbulence intensity, turbulence integral scale, and power spectral density. A sequential quadratic programming (SQP) algorithm-based finite mixture modeling method is proposed to formulate the joint distribution model of wind speed and direction. For the probability density function (PDF) of wind speed, a double-parameter Weibull distribution function is utilized, and a von Mises distribution function is applied to represent the PDF of wind direction. The SQP algorithm with multi-start points is used to estimate the parameters in the bivariate model, namely Weibull-von Mises mixture model. One-year wind monitoring data are selected to validate the effectiveness of the proposed modeling method. The optimal model is jointly evaluated by the Bayesian information criterion (BIC) and coefficient of determination, $R^2$. The obtained results indicate that the proposed SQP algorithm-based finite mixture modeling method can effectively establish the bivariate model of wind speed and direction. The established bivariate model of wind speed and direction will facilitate the wind-induced fatigue reliability assessment of long-span bridges.

Wind velocity field during thunderstorms

  • Ponte, Jacinto Jr.;Riera, Jorge D.
    • Wind and Structures
    • /
    • 제10권3호
    • /
    • pp.287-300
    • /
    • 2007
  • Wind action is a factor of fundamental importance in the structural design of light or slender constructions. Codes for structural design usually assume that the incident mean wind velocity is parallel to the ground, which constitutes a valid simplification for frequent winds caused by meteorological phenomena such as Extratropical Storms (EPS) or Tropical Storms. Wind effects due to other phenomena, such as thunderstorms, and its combination with EPS winds in so-called squall lines, are simply neglected. In this paper a model that describes the three-dimensional wind velocity field originated from a downburst in a thunderstorm (TS) is proposed. The model is based on a semi empirical representation of an axially-symmetrical flow line pattern that describes a stationary field, modulated by a function that accounts for the evolution of the wind velocity with time. The model allows the generation of a spatially and temporally variable velocity field, which also includes a fluctuating component of the velocity. All parameters employed in the model are related to meteorological variables, which are susceptible of statistical assessment. A background wind is also considered, in order to account for the translational velocity of the thunderstorm, normally due to local wind conditions. When the translation of the TS is caused by an EPS, a squall line is produced, causing the highest wind velocities associated with TS events. The resulting vertical velocity profiles were also studied and compared with existing models, such as the profiles proposed by Vicroy, et al. (1992) and Wood and Kwok (1998). The present model predicts horizontal velocity profiles that depend on the distance to the storm center, effect not considered by previous models, although the various proposals are globally compatible. The model can be applied in any region of interest, once the relevant meteorological variables are known, to simulate the excitation due to TS winds in the design of transmission lines, long-span crossings, cable-stayed bridges, towers or similar structures.

남한전역 1Km×1Km 격자지점에 대한 수치기상모의풍속의 정확도 향상을 위한 통계적 보정법 (A Statistical Tuning Method to Improve the Accuracy of 1Km×1Km Resolution-Wind Data of South Korea Generated from a Numerical Meteorological Model)

  • 김혜중;김현식;최영진;이승우;서범근
    • 응용통계연구
    • /
    • 제24권6호
    • /
    • pp.1225-1235
    • /
    • 2011
  • 본 논문은 수치기상모형에 의해 계산된 수치기상모의풍속($1km{\times}1km$ 해상도)의 정확도를 향상시키기 위한 통계적 보정법을 제안하였다. 이를 위해 남한전역을 $1km{\times}1km$ 격자로 나눈 지점(345,682지점)에 적합한 통계적 바람장 모형으로 부터 남한지역의 바람장을 추정하는 절차와 격자지점별/월별 보정인자를 계산하여 추정된 바람장과 수치 기상모의풍속간의 간극을 보정하는 절차로 이루어진 보정인자법을 개발하였다. 또한 75개 기상관측소지점에서 계산된 수치기상모의풍속자료에 보정인자법을 적용시켜 본 논문에서 제안된 보정법의 유용성을 보였다.

고리 원자력 발전 단지 사고 발생에 따른 방사능 물질 확산 가능성의 계절적 특성 연구 (Numerical Estimates of Seasonal Changes of Possible Radionuclide Dispersion at the Kori Nuclear Power Plants)

  • 김지선;이순환;박강원;이성광;최세용;조규찬;이혁우
    • 한국환경과학회지
    • /
    • 제27권6호
    • /
    • pp.425-436
    • /
    • 2018
  • To establish initial response scenarios for nuclear accidents around the Kori nuclear power plants, the potential for radionuclide diffusion was estimated using numerical experiments and statistical techniques. This study used the numerical model WRF (Weather Research and Forecasting) and FLEXPART (Flexible Particle dispersion model) to calculate the three-dimensional wind field and radionuclide dispersion, respectively. The wind patterns observed at Gijang, near the plants, and at meteorological sites in Busan, were reproduced and applied to estimates of seasonally averaged wind fields. The distribution of emitted radionuclides are strongly associated with characteristics of topography and synoptic wind patterns over nuclear power plants. Since the terrain around the power plants is complex, estimates of radionuclide distribution often produce unexpected results when wind data from different sites are used in statistical calculations. It is highly probable that in the summer and autumn, radionuclides move south-west, towards the downtown metropolitan area. This study has clear limitations in that it uses the seasonal wind field rather than the daily wind field.

유해화학물질 대기확산 예측을 위한 RAMS 기상모델의 적용 및 평가 - CARIS의 바람장 모델 검증 (Application and First Evaluation of the Operational RAMS Model for the Dispersion Forecast of Hazardous Chemicals - Validation of the Operational Wind Field Generation System in CARIS)

  • 김철희;나진균;박철진;박진호;임차순;윤이;김민섭;박춘화;김용준
    • 한국대기환경학회지
    • /
    • 제19권5호
    • /
    • pp.595-610
    • /
    • 2003
  • The statistical indexes such as RMSE (Root Mean Square Error), Mean Bias error, and IOA (Index of agreement) are used to evaluate 3 Dimensional wind and temperature fields predicted by operational meteorological model RAMS (Regional Atmospheric Meteorological System) implemented in CARIS (Chemical Accident Response Information System) for the dispersion forecast of hazardous chemicals in case of the chemical accidents in Korea. The operational atmospheric model, RAMS in CARIS are designed to use GDAPS, GTS, and AWS meteorological data obtained from KMA (Korean Meteorological Administration) for the generation of 3-dimensional initial meteorological fields. The predicted meteorological variables such as wind speed, wind direction, temperature, and precipitation amount, during 19 ∼ 23, August 2002, are extracted at the nearest grid point to the meteorological monitoring sites, and validated against the observations located over the Korean peninsula. The results show that Mean bias and Root Mean Square Error are 0.9 (m/s), 1.85 (m/s) for wind speed at 10 m above the ground, respectively, and 1.45 ($^{\circ}C$), 2.82 ($^{\circ}C$) for surface temperature. Of particular interest is the distribution of forecasting error predicted by RAMS with respect to the altitude; relatively smaller error is found in the near-surface atmosphere for wind and temperature fields, while it grows larger as the altitude increases. Overall, some of the overpredictions in comparisons with the observations are detected for wind and temperature fields, whereas relatively small errors are found in the near-surface atmosphere. This discrepancies are partly attributed to the oversimplified spacing of soil, soil contents and initial temperature fields, suggesting some improvement could probably be gained if the sub-grid scale nature of moisture and temperature fields was taken into account. However, IOA values for the wind field (0.62) as well as temperature field (0.78) is greater than the 'good' value criteria (> 0.5) implied by other studies. The good value of IOA along with relatively small wind field error in the near surface atmosphere implies that, on the basis of current meteorological data for initial fields, RAMS has good potentials to be used as a operational meteorological model in predicting the urban or local scale 3-dimensional wind fields for the dispersion forecast in association with hazardous chemical releases in Korea.

Recent Brazilian research on thunderstorm winds and their effects on structural design

  • Riera, Jorge D.;Ponte, Jacinto Jr.
    • Wind and Structures
    • /
    • 제15권2호
    • /
    • pp.111-129
    • /
    • 2012
  • Codes for structural design usually assume that the incident mean wind velocity is parallel to the ground, which constitutes a valid simplification for frequent winds caused by sypnoptic events. Wind effects due to other phenomena, such as thunderstorm downbursts, are simply neglected. In this paper, results of recent and ongoing research on this topic in Brazil are presented. The model of the three-dimensional wind velocity field originated from a downburst in a thunderstorm (TS), proposed by Ponte and Riera for engineering applications, is first described. This model allows the generation of a spatially and temporally variable velocity field, which also includes a fluctuating component of the velocity. All parameters are related to meteorological variables, which are susceptible of statistical assessment. An application of the model in the simulation of the wind climate in a region sujected to both EPS and TS winds is discussed next. It is shown that, once the relevant meteorological variables are known, the simulation of the wind excitation for purposes of design of transmission lines, long-span crossings and similar structures is feasible. Complementing the theoretical studies, wind velocity records during a recent TS event in southern Brazil are presented and preliminary conclusions on the validity of the proposed models discussed.

Joint distribution of wind speed and direction in the context of field measurement

  • Wang, Hao;Tao, Tianyou;Wu, Teng;Mao, Jianxiao;Li, Aiqun
    • Wind and Structures
    • /
    • 제20권5호
    • /
    • pp.701-718
    • /
    • 2015
  • The joint distribution of wind speed and wind direction at a bridge site is vital to the estimation of the basic wind speed, and hence to the wind-induced vibration analysis of long-span bridges. Instead of the conventional way relying on the weather stations, this study proposed an alternate approach to obtain the original records of wind speed and the corresponding directions based on field measurement supported by the Structural Health Monitoring System (SHMS). Specifically, SHMS of Sutong Cable-stayed Bridge (SCB) is utilized to study the basic wind speed with directional information. Four anemometers are installed in the SHMS of SCB: upstream and downstream of the main deck center, top of the north and south tower respectively. Using the recorded wind data from SHMS, the joint distribution of wind speed and direction is investigated based on statistical methods, and then the basic wind speeds in 10-year and 100-year recurrence intervals at these four key positions are calculated. Analytical results verify the reliability of the recorded wind data from SHMS, and indicate that the joint probability model for the extreme wind speed at SCB site fits well with the Weibull model. It is shown that the calculated basic wind speed is reduced by considering the influence of wind direction. Compared to the design basic wind speed in the Specification of China, basic wind speed considering the influence of direction or not is much smaller, indicating a high safety coefficient in the design of SCB. The results obtained in this study can provide not only references for further wind-resistance research of SCB, but also improve the understanding of the safety coefficient for wind-resistance design of other engineering structures in the similar area.

WRF 모델을 이용한 지표층 바람장의 대기경계층 모수화와 지면모델 민감도 평가 (Sensitivity Evaluation of Wind Fields in Surface Layer by WRF-PBL and LSM Parameterizations)

  • 서범근;변재영;최영진
    • 대기
    • /
    • 제20권3호
    • /
    • pp.319-332
    • /
    • 2010
  • Sensitivity experiments of WRF model using different planetary boundary layer (PBL) and land surface model (LSM) parameterizations are evaluated for prediction of wind fields within the surface layer. The experiments were performed with three PBL schemes (YSU, Pleim, MYJ) in combination with three land surface models (Noah, RUC, Pleim). The WRF model was conducted on a nested grid from 27-km to 1-km horizontal resolution. The simulations validated wind speed and direction at 10 m and 80 m above ground level at a 1-km spatial resolution over the South Korea. Statistical verification results indicate that Pleim and YSU PBL schemes are in good agreement with observations at 10 m above ground level, while the MYJ scheme produced predictions similar to the observed wind speed at 80 m above ground level. LSM comparisons indicate that the RUC model performs best in predicting 10-m and 80-m wind speed. It is found that MYJ (PBL) - RUC (LSM) simulations yielded the best results for wind field in the surface layer. The choice of PBL and LSM parameterization will contribute to more accurate wind predictions for air quality studies and wind power using WRF.