• Title/Summary/Keyword: statistical methods

Search Result 11,646, Processing Time 0.032 seconds

Collaborative CRM using Statistical Learning Theory and Bayesian Fuzzy Clustering

  • Jun, Sung-Hae
    • Communications for Statistical Applications and Methods
    • /
    • v.11 no.1
    • /
    • pp.197-211
    • /
    • 2004
  • According to the increase of internet application, the marketing process as well as the research and survey, the education process, and administration of government are very depended on web bases. All kinds of goods and sales which are traded on the internet shopping malls are extremely increased. So, the necessity of automatically intelligent information system is shown, this system manages web site connected users for effective marketing. For the recommendation system which can offer a fit information from numerous web contents to user, we propose an automatic recommendation system which furnish necessary information to connected web user using statistical learning theory and bayesian fuzzy clustering. This system is called collaborative CRM in this paper. The performance of proposed system is compared with the other methods using real data of the existent shopping mall site. This paper shows that the predictive accuracy of the proposed system is improved by comparison with others.

An Introduction to Data Analysis (자료 분석의 기초)

  • Pak, Son-Il;Lee, Young-Won
    • Journal of Veterinary Clinics
    • /
    • v.26 no.3
    • /
    • pp.189-199
    • /
    • 2009
  • With the growing importance of evidence-based medicine, clinical or biomedical research relies critically on the validity and reliability of data, and the subsequent statistical inferences for medical decision-making may lead to valid conclusion. Despite widespread use of analytical techniques in papers published in the Journal of Veterinary Clinics statistical errors particularly in design of experiments, research methodology or data analysis methods are commonly encountered. These flaws often leading to misinterpretation of the data, thereby, subjected to inappropriate conclusions. This article is the first in a series of nontechnical introduction designed not to systemic review of medical statistics but intended to provide the journal readers with an understanding of common statistical concepts, including data scale, selection of appropriate statistical methods, descriptive statistics, data transformation, confidence interval, the principles of hypothesis testing, sampling distribution, and interpretation of results.

Bivariate ROC Curve and Optimal Classification Function

  • Hong, C.S.;Jeong, J.A.
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.4
    • /
    • pp.629-638
    • /
    • 2012
  • We propose some methods to obtain optimal thresholds and classification functions by using various cutoff criterion based on the bivariate ROC curve that represents bivariate cumulative distribution functions. The false positive rate and false negative rate are calculated with these classification functions for bivariate normal distributions.

Approximate MLE for Singly Truncated Normal Distribution

  • Suk-Bok Kang;Young-Suk Cho
    • Communications for Statistical Applications and Methods
    • /
    • v.5 no.3
    • /
    • pp.879-885
    • /
    • 1998
  • In this paper, we propose the approximate maximum likelihood estimators (AMLE) of the location and the scale parameter of the singly left truncated normal distribution. We compare the proposed estimators with the simpler estimators (SE) in terms of the mean squared error (MSE) through Monte Carlo methods.

  • PDF

Accuracy of Brownian Motion Approximation in Group Sequential Methods

  • Euy Hoon Suh
    • Communications for Statistical Applications and Methods
    • /
    • v.6 no.1
    • /
    • pp.207-220
    • /
    • 1999
  • In this paper, some of the issue about a group sequential method are considered in the Bayesian context. The continuous time optimal stopping boundary can be used to approximate the optimal stopping boundary for group sequential designs. The exact stopping boundary for group sequential design is obtained by using the backward induction method and is compared with the continuous optimal stopping boundary and the corrected continuous stopping boundary.

  • PDF

A Review on Nonparametric Density Estimation Using Wavelet Methods

  • Sungho;Hwa Rak
    • Communications for Statistical Applications and Methods
    • /
    • v.7 no.1
    • /
    • pp.129-140
    • /
    • 2000
  • Wavelets constitute a new orthogonal system which has direct application in density estimation. We introduce a brief wavelet density estimation and summarize some asymptotic results. An application to mixture normal distributions is implemented with S-Plus.

  • PDF

Adaptive Kernel Density Estimation

  • Faraway, Julian.;Jhun, Myoungshic
    • Communications for Statistical Applications and Methods
    • /
    • v.2 no.1
    • /
    • pp.99-111
    • /
    • 1995
  • It is shown that the adaptive kernel methods can potentially produce superior density estimates to the fixed one. In using the adaptive estimates, problems pertain to the initial choice of the estimate can be solved by iteration. Also, simultaneous recommended for variety of distributions. Some data-based method for the choice of the parameters are suggested based on simulation study.

  • PDF