International Journal of Fuzzy Logic and Intelligent Systems
/
제5권4호
/
pp.281-285
/
2005
Learning and evolving are two basics for data mining. As compared with classical learning theory based on objective function with minimizing training errors, the recently evolutionary computing has had an efficient approach for constructing optimal model without the minimizing training errors. The global search of evolutionary computing in solution space can settle the local optima problems of learning models. In this research, combining co-evolving algorithm into statistical learning theory, we propose an co-evolutionary computing for statistical learning theory for overcoming local optima problems of statistical learning theory. We apply proposed model to classification and prediction problems of the learning. In the experimental results, we verify the improved performance of our model using the data sets from UCI machine learning repository and KDD Cup 2000.
This paper investigates the role of input frequency in the acquisition of verb argument structures based on distributional information of a corpus of utterances derived from the English CHILDES database (MacWhinney 1993). It has been widely accepted that children successfully learn verb argument structures by innate language mechanisms, such as linking rules which connect verb meanings and its syntactic structures. In contrast, an approach to language acquisition called “statistical language learning” has currently claimed that children could succeed in acquiring syntactic structures in the absence of innate language mechanisms, making use of distributional properties of the input. In this paper, I evaluate the feasibility of the statistical learning in acquiring verb argument structures, based on distributional information about locative verbs in parental input. The naturalistic data allow us to investigate to what extent the statistical learning approach can and cannot help children succeed in learning the syntax of locative verbs. Based on the results of English database analysis, I show that there is rich statistical information for learning the syntactic possibilities of locative verbs in parental input, despite some limitations in the statistical learning approach.
Journal of the Korean Data and Information Science Society
/
제18권2호
/
pp.375-384
/
2007
As teachings that use the ICT are more popular, many studies on the dynamic geometry environment(DGE) are under way. An important factor emphasized in the studies is to practical use learning activities of learners. In this study, we first define the learning history data in DGE. Second we develop a prototype of the DGE that is able to collect and analyze the learning history data automatically. The environment enables not only to grasp leaning history but also to create and manage new learning objects.
최근 영상의학 연구 분야에서 영상 인자를 포함한 임상 예측 모형의 수요가 증가하고 있고, 특히 라디오믹스 연구가 활발하게 이루어지면서 기존의 전통적인 회귀 모형뿐만 아니라 머신러닝을 사용하는 연구들이 많아지고 있다. 본 종설에서는 영상의학 분야에서 예측 모형 연구에 사용된 통계학적 방법과 머신 러닝 방법들을 조사하여 정리하고, 각 방법론에 대한 설명과 장단점을 살펴보고자 한다. 마지막으로 예측 모형 연구에서 분석 방법 선택에서의 고려사항을 정리해 보고자 한다.
In our fast-moving information and knowledge society, skills and know-how rapidly become outdated. Virtual learning environments play a key role in meeting today's growing demand for customized educational and vocational training and lift-long teaming. The scope of multimedia-based and web-supported education is illustrated by means of an interdisciplinary multimedia project 'New Statistics' funded by the German government. The project output contains more than 70 learning modules covering the complete curriculum of an introductory statistics course. All modules are based on a statistical laboratory and on a multitude of Java applets, animations and case studies. The paper focuses on presenting the statistical laboratory and the applets. These components present the main project pillars and are particularly suitable for international use, independently from the original project framework. This article also demonstrates the application of Java applets and other multimedia developments from the educational world to official statistics for interactive presentation of statistical information.
In this study, we aim to use big data resources and statistical analysis to obtain a reliable instruction to reach high-quality and high yield agricultural yields. In this regard, soil type data, raining and temperature data as well as wheat production in each year are collected for a specific region. Using statistical methodology, the acquired data was cleaned to remove incomplete and defective data. Afterwards, using several classification methods in machine learning we tried to distinguish between different factors and their influence on the final crop yields. Comparing the proposed models' prediction using statistical quantities correlation factor and mean squared error between predicted values of the crop yield and actual values the efficacy of machine learning methods is discussed. The results of the analysis show high accuracy of machine learning methods in the prediction of the crop yields. Moreover, it is indicated that the random forest (RF) classification approach provides best results among other classification methods utilized in this study.
Statistical thinking has a broad definition but focuses on the context of regression modelling in the present study. To foster students' statistical thinking within the context, teaching should no longer be seen as transfer of knowledge from teacher to students but as a process of engaging with learning activities in which they develop ownership of knowledge. This study aims at collaborative learning contexts; students were divided into small groups in order to increase opportunities for peer collaboration. Each group of students was asked to do a regression project after class. Through doing the project, they learnt to organize and connect previously accrued piecemeal statistical knowledge in an integrated manner. They could also clarify misunderstandings and solve problems through verbal exchanges among themselves. They gave a clear and lucid account of the model they had built and showed collaborative interactions when presenting their projects in front of class. A survey was conducted to solicit their feedback on how peer collaboration would facilitate learning of statistics. Almost all students found their interaction with their peers productive; they focused on the development of statistical thinking with concerted effort.
The purpose of this study was to find research trends of smart learning. For this, we identified the research's characteristics such as the subject or keyword of research, method, data collection, and statistical analysis method. The 2,865 articles published from 1995 to 2013 were gathered from five Korean academic journals related to smart learning. Among them, research keyword, areas, research method, data collection method, and statistical analysis method were analyzed on 596 papers. The findings of this study were as follows: (a) Smart learning papers such keyword likes u-learning, m-learning, and smart-learning were emerging after 2006. Smart learning papers with ICT related topics were highly increased after 2000, but they were decreased after 2006. Smart learning papers with e-learning related keywords were steadily increased after 2000 through 2013. (b) The research field of deign had the highest portion in smart learning research, but managing had the lowest portion. (c) Development was mainly used as a research method. Both questionnaire and experiment were mainly used for collecting data methods. T-test and frequency analysis were mainly used as statistical analysis methods.
Communications for Statistical Applications and Methods
/
제19권3호
/
pp.433-450
/
2012
연구자가 같은 작업을 반복적으로 수행할 때, 작업 효율성은 연구에 관련된 지식, 경험, 기술이 축적되면서 향상된다. 결과를 얻기 위해 연구에 투자하는 시간은 같은 작업을 반복함으로써 줄일 수 있다. 이러한 현상을 학습곡선 효과(learning curve effect)라고 일컫는다. 학습곡선(learning curves)은 학습의 변화를 시각적으로 나타낸 것으로 이전의 학습곡선 연구에서는 시간을 일정한 구간으로 나누어 구간별 작업에 대한 숙련도의 평균 차이 여부를 확인하였다. 이러한 방법은 구간을 어떻게 나눌 것인가 하는 기준이 존재하지 않으며, 더욱이 이항 반응 자료로 모형을 적합하기 어려운 문제점을 가지고 있다. 본 연구에서는 이산형 확률변수 중 이항 반응 자료(베르누이자료)에 대한 학습곡선의 통계적 모형에 초점을 맞추고자 한다. 누적확률분포의 특성을 이용하여 모수를 추정하기 위해서 뉴튼-랩슨 방법(Newton-Raphson method)을 사용하였고, 이 연구에서 제안한 모형의 점근적 분포를 구하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.