• 제목/요약/키워드: statistical forecast model

검색결과 254건 처리시간 0.021초

상황인식 기반 지능형 최적 경로계획 (Intelligent Optimal Route Planning Based on Context Awareness)

  • 이현정;장용식
    • Asia pacific journal of information systems
    • /
    • 제19권2호
    • /
    • pp.117-137
    • /
    • 2009
  • Recently, intelligent traffic information systems have enabled people to forecast traffic conditions before hitting the road. These convenient systems operate on the basis of data reflecting current road and traffic conditions as well as distance-based data between locations. Thanks to the rapid development of ubiquitous computing, tremendous context data have become readily available making vehicle route planning easier than ever. Previous research in relation to optimization of vehicle route planning merely focused on finding the optimal distance between locations. Contexts reflecting the road and traffic conditions were then not seriously treated as a way to resolve the optimal routing problems based on distance-based route planning, because this kind of information does not have much significant impact on traffic routing until a a complex traffic situation arises. Further, it was also not easy to take into full account the traffic contexts for resolving optimal routing problems because predicting the dynamic traffic situations was regarded a daunting task. However, with rapid increase in traffic complexity the importance of developing contexts reflecting data related to moving costs has emerged. Hence, this research proposes a framework designed to resolve an optimal route planning problem by taking full account of additional moving cost such as road traffic cost and weather cost, among others. Recent technological development particularly in the ubiquitous computing environment has facilitated the collection of such data. This framework is based on the contexts of time, traffic, and environment, which addresses the following issues. First, we clarify and classify the diverse contexts that affect a vehicle's velocity and estimates the optimization of moving cost based on dynamic programming that accounts for the context cost according to the variance of contexts. Second, the velocity reduction rate is applied to find the optimal route (shortest path) using the context data on the current traffic condition. The velocity reduction rate infers to the degree of possible velocity including moving vehicles' considerable road and traffic contexts, indicating the statistical or experimental data. Knowledge generated in this papercan be referenced by several organizations which deal with road and traffic data. Third, in experimentation, we evaluate the effectiveness of the proposed context-based optimal route (shortest path) between locations by comparing it to the previously used distance-based shortest path. A vehicles' optimal route might change due to its diverse velocity caused by unexpected but potential dynamic situations depending on the road condition. This study includes such context variables as 'road congestion', 'work', 'accident', and 'weather' which can alter the traffic condition. The contexts can affect moving vehicle's velocity on the road. Since these context variables except for 'weather' are related to road conditions, relevant data were provided by the Korea Expressway Corporation. The 'weather'-related data were attained from the Korea Meteorological Administration. The aware contexts are classified contexts causing reduction of vehicles' velocity which determines the velocity reduction rate. To find the optimal route (shortest path), we introduced the velocity reduction rate in the context for calculating a vehicle's velocity reflecting composite contexts when one event synchronizes with another. We then proposed a context-based optimal route (shortest path) algorithm based on the dynamic programming. The algorithm is composed of three steps. In the first initialization step, departure and destination locations are given, and the path step is initialized as 0. In the second step, moving costs including composite contexts into account between locations on path are estimated using the velocity reduction rate by context as increasing path steps. In the third step, the optimal route (shortest path) is retrieved through back-tracking. In the provided research model, we designed a framework to account for context awareness, moving cost estimation (taking both composite and single contexts into account), and optimal route (shortest path) algorithm (based on dynamic programming). Through illustrative experimentation using the Wilcoxon signed rank test, we proved that context-based route planning is much more effective than distance-based route planning., In addition, we found that the optimal solution (shortest paths) through the distance-based route planning might not be optimized in real situation because road condition is very dynamic and unpredictable while affecting most vehicles' moving costs. For further study, while more information is needed for a more accurate estimation of moving vehicles' costs, this study still stands viable in the applications to reduce moving costs by effective route planning. For instance, it could be applied to deliverers' decision making to enhance their decision satisfaction when they meet unpredictable dynamic situations in moving vehicles on the road. Overall, we conclude that taking into account the contexts as a part of costs is a meaningful and sensible approach to in resolving the optimal route problem.

해양 이상 자료 탐지를 위한 오토인코더 활용 기법 최적화 연구 (An Outlier Detection Using Autoencoder for Ocean Observation Data)

  • 김현재;김동훈;임채욱;신용탁;이상철;최영진;우승범
    • 한국해안·해양공학회논문집
    • /
    • 제33권6호
    • /
    • pp.265-274
    • /
    • 2021
  • 해양 이상 자료 탐지의 연구는 이전부터 활발하게 이루어지고 있으며, 통계 및 거리 기반의 기계 학습 알고리즘을 활용하는 기법들이 개발되었다. 최근에는 AI 기반의 해양 자료 이상 탐지 기법이 많은 관심을 받고 있으며, AI를 활용한 해양 이상 자료 탐지 기법은 정답이 주어지는 지도학습 기법이 주를 이루고 있다. 이러한 방법은 학습에 필요한 모든 자료에 수작업으로 분류 정보(라벨)를 지정해야 한다는 점에서 많은 시간과 비용이 요구된다. 본 연구에서는 이러한 문제를 극복하기 위해 비지도학습 기반의 오토인코더를 이상 자료 탐지 기법에 사용하였다. 실험으로는 오토인코더의 평가를 위해 단변수·다변수학습 두가지 실험을 구성하였고, 단변수 학습은 기상청에서 제공하는 덕적도 부이 정점 관측 자료 중 수온만 사용하였으며, 다변수 학습은 수온과 기온, 풍향, 풍속, 기압, 습도 등을 사용하였다. 사용기간은 1996~2020년의 25년간이며 학습 자료에 해양-기상 자료의 특성을 고려한 전처리 기법을 적용하였다. 학습된 다변수와 단변수 오토인코더를 활용하여 실제 표층 수온에 대한 이상 탐지를 시도하였다. 모델성능 비교를 위해 오차를 삽입한 합성 자료에 다변수와 단변수 오토인코더를 포함한 여러 이상 탐지 기법을 적용하여 정량적으로 평가하였으며, 다변수/단변수의 정확도가 각각 약 96%/91%로써 다변수 오토인코더가 더 나은 이상자료 탐지 성능을 보였다. 오토인코더를 이용한 비지도학습 기반 이상 탐지 기법은 주관적 판단에 의한 오류와 자료 라벨링에 필요한 시간과 비용을 줄일 수 있다는 점에서 다양하게 활용될 것으로 판단된다.

생성 AI 스타트업에 대한 벤처투자 분석과 예측: 미국과 한국을 중심으로 (Analysis and Forecast of Venture Capital Investment on Generative AI Startups: Focusing on the U.S. and South Korea)

  • 이승아;정태현
    • 벤처창업연구
    • /
    • 제18권4호
    • /
    • pp.21-35
    • /
    • 2023
  • 생성 AI 기술의 막대한 파급력에 대한 기대가 산업계를 휩쓸고 있다. 생성 AI 기술의 활용과 발전에 창업생태계가 중요한 역할을 할 것으로 기대되는 만큼, 이 분야의 벤처투자 현황과 특성을 더 잘 이해하는 것도 중요하다. 본 연구는 생성 AI 기술과 창업생태계를 주도하는 미국을 비교 대상으로 삼아 한국의 벤처투자 내역을 분석하고 향후 벤처투자 금액을 예측한다. 분석을 위해서 미국의 117개 생성 AI 스타트업의 2008년부터 2023년까지 286건의 투자 내역과 한국의 42개 생성 AI 스타트업의 2011년부터 2023년까지 144건의 투자 내역을 수집하여 새로운 분석 자료를 구축했다. 분석 결과, 생성 AI 기업의 창업과 벤처 투자가 최근 들어 급증하고 있으며, 초기 투자에 절대다수의 투자 건이 집중됐다는 점이 미국과 한국에서 공통적으로 확인됐다. 양국의 차이점도 몇 가지 발견됐다. 미국의 경우 한국과는 다르게 같은 투자 단계에서 최근의 투자 규모가 그 이전보다 285%에서 488%까지 증가했다. 단계별 투자 소요 기간은 한국이 미국보다 다소 길었으나 그 차이가 통계적으로 유의하지는 않았다. 또한, 전체 벤처투자 금액 중 생성 AI 기업에 대한 투자 비중도 한국이 미국보다 높았다. 생성AI의 세부 분야별로는 미국은 텍스트와 모델 분야에 전체 투자액의 59.2%가 집중된 반면, 한국은 비디오, 이미지, 챗 기술에 전체 투자액의 61.9%가 집중돼 차이를 보였다. 2023년부터 2029년까지 한국의 생성 AI 기업에 대한 벤처 투자 예상 금액을 네 가지 다른 모델로 예측한 결과, 평균 3조 4,300억 원(최소 2조 4,085억 원, 최대 5조 919억 원)이 필요할 것으로 추정됐다. 본 연구는 미국과 한국의 생성 AI 기술 분야의 벤처투자를 다각도로 분석하고, 한국의 벤처투자 예상 금액을 제시하였다는 점에서 실무적 의의를 찾을 수 있다. 또한, 아직 학술적 연구가 충분하지 않은 생성AI 벤처투자에 대한 현황을 구체적 자료와 실증근거를 통해 분석함으로써 향후 깊이 있는 학술 연구의 토대를 제시한다는 점에서 학술적 의의가 있다. 본 연구에서는 벤처투자 금액 예측을 위한 방법 두 가지를 새롭게 개발하여 생성 AI의 향후 벤처투자 금액을 예측하는데 적용했다. 이 방법도 후속 학술 연구에서 다양한 분야로 확장·적용되고 정제된다면 벤처투자 예상 금액 예측 방법을 풍부하게 하는 데 공헌할 수 있을 것이다.

  • PDF

Support Vector Regression을 이용한 GARCH 모형의 추정과 투자전략의 성과분석 (Estimation of GARCH Models and Performance Analysis of Volatility Trading System using Support Vector Regression)

  • 김선웅;최흥식
    • 지능정보연구
    • /
    • 제23권2호
    • /
    • pp.107-122
    • /
    • 2017
  • 주식시장의 주가 수익률에 나타나는 변동성은 투자 위험의 척도로서 재무관리의 이론적 모형에서뿐만 아니라 포트폴리오 최적화, 증권의 가격 평가 및 위험관리 등 투자 실무 영역에서도 매우 중요한 역할을 하고 있다. 변동성은 주가 수익률이 평균을 중심으로 얼마나 큰 폭의 움직임을 보이는가를 판단하는 지표로서 보통 수익률의 표준편차로 측정한다. 관찰 가능한 표준편차는 과거의 주가 움직임에서 측정되는 역사적 변동성(historical volatility)이다. 역사적 변동성이 미래의 주가 수익률의 변동성을 예측하려면 변동성이 시간 불변적(time-invariant)이어야 한다. 그러나 대부분의 변동성 연구들은 변동성이 시간 가변적(time-variant)임을 보여주고 있다. 이에 따라 시간 가변적 변동성을 예측하기 위한 여러 계량 모형들이 제안되었다. Engle(1982)은 변동성의 시간 가변적 특성을 잘 반영하는 변동성 모형인 Autoregressive Conditional Heteroscedasticity(ARCH)를 제안하였으며, Bollerslev(1986) 등은 일반화된 ARCH(GARCH) 모형으로 발전시켰다. GARCH 모형의 실증 분석 연구들은 실제 증권 수익률에 나타나는 두터운 꼬리 분포 특성과 변동성의 군집현상(clustering)을 잘 설명하고 있다. 일반적으로 GARCH 모형의 모수는 가우스분포로부터 추출된 자료에서 최적의 성과를 보이는 로그우도함수에 대한 최우도추정법에 의하여 추정되고 있다. 그러나 1987년 소위 블랙먼데이 이후 주식 시장은 점점 더 복잡해지고 시장 변수들이 많은 잡음(noise)을 띠게 됨에 따라 변수의 분포에 대한 엄격한 가정을 요구하는 최우도추정법의 대안으로 인공지능모형에 대한 관심이 커지고 있다. 본 연구에서는 주식 시장의 주가 수익률에 나타나는 변동성의 예측 모형인 GARCH 모형의 모수추정방법으로 지능형 시스템인 Support Vector Regression 방법을 제안한다. SVR은 Vapnik에 의해 제안된 Support Vector Machines와 같은 원리를 회귀분석으로 확장한 모형으로서 Vapnik의 e-insensitive loss function을 이용하여 비선형 회귀식의 추정이 가능해졌다. SVM을 이용한 회귀식 SVR은 두터운 꼬리 분포를 보이는 주식시장의 변동성과 같은 관찰치에서도 우수한 추정 성능을 보인다. 2차 손실함수를 사용하는 기존의 최소자승법은 부최적해로서 추정 오차가 확대될 수 있다. Vapnik의 손실함수에서는 입실론 범위내의 예측 오차는 무시하고 큰 예측 오차만 손실로 처리하기 때문에 구조적 위험의 최소화를 추구하게 된다. 금융 시계열 자료를 분석한 많은 연구들은 SVR의 우수성을 보여주고 있다. 본 연구에서는 주가 변동성의 분석 대상으로서 KOSPI 200 주가지수를 사용한다. KOSPI 200 주가지수는 한국거래소에 상장된 우량주 중 거래가 활발하고 업종을 대표하는 200 종목으로 구성된 업종 대표주들의 포트폴리오이다. 분석 기간은 2010년부터 2015년까지의 6년 동안이며, 거래일의 일별 주가지수 종가 자료를 사용하였고 수익률 계산은 주가지수의 로그 차분값으로 정의하였다. KOSPI 200 주가지수의 일별 수익률 자료의 실증분석을 통해 기존의 Maximum Likelihood Estimation 방법과 본 논문이 제안하는 지능형 변동성 예측 모형의 예측성과를 비교하였다. 주가지수 수익률의 일별 자료 중 학습구간에서 대칭 GARCH 모형과 E-GARCH, GJR-GARCH와 같은 비대칭 GARCH 모형에 대하여 모수를 추정하고, 검증 구간 데이터에서 변동성 예측의 성과를 비교하였다. 전체 분석기간 1,487일 중 학습 기간은 1,187일, 검증 기간은 300일 이다. MLE 추정 방법의 실증분석 결과는 기존의 많은 연구들과 비슷한 결과를 보여주고 있다. 잔차의 분포는 정규분포보다는 Student t분포의 경우 더 우수한 모형 추정 성과를 보여주고 있어, 주가 수익률의 비정규성이 잘 반영되고 있다고 할 수 있다. MSE 기준으로, SVR 추정의 변동성 예측에서는 polynomial 커널함수를 제외하고 linear, radial 커널함수에서 MLE 보다 우수한 예측 성과를 보여주었다. DA 지표에서는 radial 커널함수를 사용한 SVR 기반의 지능형 GARCH 모형이 가장 우수한 변동성의 변화 방향에 대한 방향성 예측력을 보여주었다. 추정된 지능형 변동성 모형을 이용하여 예측된 주식 시장의 변동성 정보가 경제적 의미를 갖는지를 검토하기 위하여 지능형 변동성 거래 전략을 도출하였다. 지능형 변동성 거래 전략 IVTS의 진입규칙은 내일의 변동성이 증가할 것으로 예측되면 변동성을 매수하고 반대로 변동성의 감소가 예상되면 변동성을 매도하는 전략이다. 만약 변동성의 변화 방향이 전일과 동일하다면 기존의 변동성 매수/매도 포지션을 유지한다. 전체적으로 SVR 기반의 GARCH 모형의 투자 성과가 MLE 기반의 GARCH 모형의 투자 성과보다 높게 나타나고 있다. E-GARCH, GJR-GARCH 모형의 경우는 MLE 기반의 GARCH 모형을 이용한 IVTS 전략은 손실이 나지만 SVR 기반의 GARCH 모형을 이용한 IVTS 전략은 수익으로 나타나고 있다. SVR 커널함수에서는 선형 커널함수가 더 좋은 투자 성과를 보여주고 있다. 선형 커널함수의 경우 투자 수익률이 +526.4%를 기록하고 있다. SVR 기반의 GARCH 모형을 이용하는 IVTS 전략의 경우 승률도 51.88%부터 59.7% 사이로 높게 나타나고 있다. 옵션을 이용하는 변동성 매도전략은 방향성 거래전략과 달리 하락할 것으로 예측된 변동성의 예측 방향이 틀려 변동성이 소폭 상승하거나 변동성이 하락하지 않고 제자리에 있더라도 옵션의 시간가치 요인 때문에 전체적으로 수익이 실현될 수도 있다. 정확한 변동성의 예측은 자산의 가격 결정뿐만 아니라 실제 투자에서도 높은 수익률을 얻을 수 있기 때문에 다양한 형태의 인공신경망을 활용하여 더 나은 예측성과를 보이는 변동성 예측 모형을 개발한다면 주식시장의 투자자들에게 좋은 투자 정보를 제공하게 될 것이다.