• 제목/요약/키워드: statistical forecast model

검색결과 254건 처리시간 0.033초

수입관리에서 회귀모형 기반 수요 복원 방법 (A Regression based Unconstraining Demand Method in Revenue Management)

  • 이재준;이우주;김정환
    • 응용통계연구
    • /
    • 제28권3호
    • /
    • pp.467-475
    • /
    • 2015
  • 정확한 수요예측은 수입관리(RM)에서 중요한 요소이다. 기 출발편 예약 데이터는 미래 출발편의 수요를 예측하는데 이용되는데, 이 중 일부 데이터에는 예약 요청이 거부된 경우가 포함된다. 거부된 예약 요청은 통계학적 관점에서 중도절단된 것으로 해석될 수 있으며, 이러한 중도절단된 수요를 복원하는 것은 미래 출발편의 참수요 예측을 위해 중요한 사안이다. 현재까지 여러 복원방법들이 소개되었으며, Expectation Maximization 방법이 가장 우수하다고 알려져있다. 본 연구에서는 중도절단된 자료를 복원할 수 있는 회귀모형 기반의 새로운 수요복원 방법을 제시하였다. 그리고 모의실험을 통해 제안된 새로운 방법의 성능을 RM에서 대표적으로 사용되는 두 가지 복원방법들과 비교하였다.

기상청 현업 모형(UM)과 1차원 난류모형(PAFOG)의 접합시스템 개발 및 검증 (Development and Validation of the Coupled System of Unified Model (UM) and PArameterized FOG (PAFOG))

  • 김원흥;염성수
    • 대기
    • /
    • 제25권1호
    • /
    • pp.149-154
    • /
    • 2015
  • As an attempt to improve fog predictability at Incheon International Airport (IIA) we couple the 3D weather forecasting model currently operational in Korea Meteorological Administration (regional Unified Model, UM_RE) with a 1D turbulence model (PAFOG). The coupling is done by extracting the meteorological data from the 3D model and properly inserting them in the PAFOG model as initial conditions and external forcing. The initial conditions include surface temperature, 2 m temperature and dew point temperature, geostrophic wind at 850 hPa and vertical profiles of temperature and dew point temperature. Moisture and temperature advections are included as external forcing and updated every hr. To validate the performance of the coupled system, simulation results of the coupled system are compared to those of the 3D model alone for the 22 sea fog cases observed over the Yellow Sea. Three statistical indices, i.e., Root Mean Square Error (RMSE), linear correlation coefficient (R) and Critical Success Index (CSI), are examined, and they all indicate that the coupled system performs better than the 3D model alone. These are certainly promising results but more improvement is required before the coupled system can actually be used as an operational fog forecasting model. For the RMSE, R, and CSI values for the coupled system are still not good enough for operational fog forecast.

버스의 정차시간을 고려한 장기 도착시간 예측 모델 (Long-Term Arrival Time Estimation Model Based on Service Time)

  • 박철영;김홍근;신창선;조용윤;박장우
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제6권7호
    • /
    • pp.297-306
    • /
    • 2017
  • 버스정보 시스템을 이용하는 시민들은 더 정확한 예측 정보를 원한다. 하지만 평균 기반 단기간 예측 알고리즘을 사용하는 대부분의 버스정보시스템에서는 교통흐름, 신호주기, 정차시간 등의 영향이 고려되지 않기 때문에 많은 오차를 포함하고 있는 실정이다. 따라서 본 논문에서는 오차의 영향요인 분석을 통해 예측정보의 정밀도를 향상시켜 시민들의 편의를 도모하고자 한다. 이에 현재 운영되고 있는 버스정보 시스템의 자료를 토대로 오차의 영향요인을 분석했다. 분석 데이터에서 시간대별 특성과 지리적 여건에 의한 영향이 복합적으로 나타나고, 정차시간과 단위구간속도에 미치는 영향도가 다름을 보였다. 이에 따라 정차시간은 일반화 가법 모형을 사용하여 시간, GPS 좌표, 통과 노선수의 설명변수로 패턴을 구축하고, 단위구간에 대해 은닉 마르코프 모델을 사용하여 교통흐름에 따른 영향도를 고려한 패턴을 구축했다. 패턴 구축의 결과로 정밀한 실시간예측이 가능하고, 노선 통행속도의 장기간 예측이 가능했다. 마지막으로 관측 데이터와 예측 데이터의 통계적 검정 과정을 통해 전구간 예측에 적합한 모델임을 보였다. 본 논문의 결과로 시민들에게 더 정확한 예측 정보를 제공하고, 장기간 예측은 배차시간 등의 의사결정에 중요한 역할을 수행할 수 있으리라 생각한다.

인터넷 트래픽 예측 모형 성능 분석 연구 (Performance Analysis of Internet Traffic Forecasting Model)

  • 김삼용;하명호;정재윤
    • 응용통계연구
    • /
    • 제24권2호
    • /
    • pp.307-313
    • /
    • 2011
  • 본 연구에서는 인터넷 트래픽 자료를 예측하는데 사용되는 Holt-Winters, FARIMA, AR-GARCH 모형을 트래픽 예측에 적용하여 각 모형을 성능을 비교하고자 한다. 각 시계열 모형에 대해 소개하고, 트래픽 자료의 특성인 장기기억 특성을 설명하는데 적합한 모형을 알아보기 위해 실제 트래픽 자료에 적용하여 예측 성능을 비교하였다.

물수요의 추세 변화의 적응을 위한 모델링 절차 제시:베이지안 매개변수 산정법 적용 (Modeling Procedure to Adapt to Change of Trend of Water Demand: Application of Bayesian Parameter Estimation)

  • 이상은;박희경
    • 상하수도학회지
    • /
    • 제23권2호
    • /
    • pp.241-249
    • /
    • 2009
  • It is well known that the trend of water demand in large-size water supply systems has been suddenly changed, and many expansions of water supply facilities become unnecessary. To be cost-effective, thus, politicians as well as many professionals lay stress on the adaptive management of water supply facilities. Failure in adapting to the new trend of demand is sure to be the most critical reason of unnecessary expansions. Hence, we try to develop the model and modeling procedure that do not depend on the old data of demand, and provide engineers with the fast learning process. To forecast water demand of Seoul, the Bayesian parameter estimation was applied, which is a representative method for statistical pattern recognition. It results that we can get a useful time-series model after observing water demand during 6 years, although trend of water demand were suddenly changed.

Deep Learning-based Delinquent Taxpayer Prediction: A Scientific Administrative Approach

  • YongHyun Lee;Eunchan Kim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권1호
    • /
    • pp.30-45
    • /
    • 2024
  • This study introduces an effective method for predicting individual local tax delinquencies using prevalent machine learning and deep learning algorithms. The evaluation of credit risk holds great significance in the financial realm, impacting both companies and individuals. While credit risk prediction has been explored using statistical and machine learning techniques, their application to tax arrears prediction remains underexplored. We forecast individual local tax defaults in Republic of Korea using machine and deep learning algorithms, including convolutional neural networks (CNN), long short-term memory (LSTM), and sequence-to-sequence (seq2seq). Our model incorporates diverse credit and public information like loan history, delinquency records, credit card usage, and public taxation data, offering richer insights than prior studies. The results highlight the superior predictive accuracy of the CNN model. Anticipating local tax arrears more effectively could lead to efficient allocation of administrative resources. By leveraging advanced machine learning, this research offers a promising avenue for refining tax collection strategies and resource management.

Development of a Daily Epidemiological Model of Rice Blast Tailored for Seasonal Disease Early Warning in South Korea

  • Kim, Kwang-Hyung;Jung, Imgook
    • The Plant Pathology Journal
    • /
    • 제36권5호
    • /
    • pp.406-417
    • /
    • 2020
  • Early warning services for crop diseases are valuable when they provide timely forecasts that farmers can utilize to inform their disease management decisions. In South Korea, collaborative disease controls that utilize unmanned aerial vehicles are commonly performed for most rice paddies. However, such controls could benefit from seasonal disease early warnings with a lead time of a few months. As a first step to establish a seasonal disease early warning service using seasonal climate forecasts, we developed the EPIRICE Daily Risk Model for rice blast by extracting and modifying the core infection algorithms of the EPIRICE model. The daily risk scores generated by the EPIRICE Daily Risk Model were successfully converted into a realistic and measurable disease value through statistical analyses with 13 rice blast incidence datasets, and subsequently validated using the data from another rice blast experiment conducted in Icheon, South Korea, from 1974 to 2000. The sensitivity of the model to air temperature, relative humidity, and precipitation input variables was examined, and the relative humidity resulted in the most sensitive response from the model. Overall, our results indicate that the EPIRICE Daily Risk Model can be used to produce potential disease risk predictions for the seasonal disease early warning service.

영동지역 봄철 소나무림에서 강우후 연료습도변화 예측모델 개발 (지표연료 직경두께를 중심으로) (Development of Prediction Model of Fuel Moisture Changes After Precipitation in the Spring for the Pine Forest Located the Yeongdong Region (Focused on the Down Wood Material Diameter))

  • 이시영;권춘근;이명욱;이해평
    • 한국화재소방학회논문지
    • /
    • 제24권4호
    • /
    • pp.18-26
    • /
    • 2010
  • 강우 후 경과일수에 따른 연료습도 변화는 산불위험도 예측과 산불감시원 활용에 매우 중요하다. 따라서 이러한 산불위험 조건을 구명하기 위해 2007년 봄철 영동지방 소나무림에서 임분 밀도별로 5mm 이상 강우 후 지표에 떨어져 있는 고사한 나뭇가지의 직경이 0.6cm 이하, 0.6~3.0cm, 3.0~6.0cm, 6.0cm 이상에 대한 연료습도변화 예측모델을 개발하였다. 연구결과 지표연료의 직경이 작고, 소임분일수록 연료습도의 감소가 빠르게 진행되었으며 산불위험 연료습도에 도달하는 날짜도 소임분 직경 0.6cm 이하의 경우 2일차, 직경 0.6~3.0cm의 경우 3일차로 나타났다. 이러한 결과를 토대로 각 직경별 연료습도변화 예측모델($R^2=0.76{\sim}0.92$)을 개발하였으며, 2008년 동일기간의 강우 후 기상 실측자료를 적용하여 예측모델을 검증한 결과 1% 수준에서 유의성이 있음을 알 수 있었다.

초등학교 교원 수 예측을 위한 시계열 회귀모형 (Time series regression model for forecasting the number of elementary school teachers)

  • 류수락;김종태
    • Journal of the Korean Data and Information Science Society
    • /
    • 제24권2호
    • /
    • pp.321-332
    • /
    • 2013
  • 본 연구는 지속적인 저출산의 여파로 2020년에는 초등학생 수가 올해 대비 17%, 중고교생은 30%가 감소할 것이라는 예측을 가지고 초등학교 교원 수를 예측하기 위한 방법을 제시하는데 있다. 교육통계연보의 1970년부터 2010년까지의 초등교육 관련 주요 통계 자료를 이용하여 시계열 회귀모형과 시계열 그룹별 회귀모형, 지수평활법 모형을 제시하고, 제시된 모형을 이용하여 향후 10년간의 연도별 초등학교 교원 수를 예측하였다. 모형 예측 결과 시계열 그룹별 회귀 모형이 교원 수 시계열을 가장 잘 설명하는 것으로 나타났으며, 적합한 모형으로 판명되었다. 3가지 분석방법 모형에 따른 예측값에 대한 장단점과 한계를 제시한다.

Research on Forecasting Framework for System Marginal Price based on Deep Recurrent Neural Networks and Statistical Analysis Models

  • Kim, Taehyun;Lee, Yoonjae;Hwangbo, Soonho
    • 청정기술
    • /
    • 제28권2호
    • /
    • pp.138-146
    • /
    • 2022
  • Electricity has become a factor that dramatically affects the market economy. The day-ahead system marginal price determines electricity prices, and system marginal price forecasting is critical in maintaining energy management systems. There have been several studies using mathematics and machine learning models to forecast the system marginal price, but few studies have been conducted to develop, compare, and analyze various machine learning and deep learning models based on a data-driven framework. Therefore, in this study, different machine learning algorithms (i.e., autoregressive-based models such as the autoregressive integrated moving average model) and deep learning networks (i.e., recurrent neural network-based models such as the long short-term memory and gated recurrent unit model) are considered and integrated evaluation metrics including a forecasting test and information criteria are proposed to discern the optimal forecasting model. A case study of South Korea using long-term time-series system marginal price data from 2016 to 2021 was applied to the developed framework. The results of the study indicate that the autoregressive integrated moving average model (R-squared score: 0.97) and the gated recurrent unit model (R-squared score: 0.94) are appropriate for system marginal price forecasting. This study is expected to contribute significantly to energy management systems and the suggested framework can be explicitly applied for renewable energy networks.