• Title/Summary/Keyword: statistical confidence

Search Result 1,002, Processing Time 0.023 seconds

Confidence Intervals for a Proportion in Finite Population Sampling

  • Lee, Seung-Chun
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.3
    • /
    • pp.501-509
    • /
    • 2009
  • Recently the interval estimation of binomial proportions is revisited in various literatures. This is mainly due to the erratic behavior of the coverage probability of the well-known Wald confidence interval. Various alternatives have been proposed. Among them, the Agresti-Coull confidence interval, the Wilson confidence interval and the Bayes confidence interval resulting from the noninformative Jefferys prior were recommended by Brown et al. (2001). However, unlike the binomial distribution case, little is known about the properties of the confidence intervals in finite population sampling. In this note, the property of confidence intervals is investigated in anile population sampling.

Multivariate confidence region using quantile vectors

  • Hong, Chong Sun;Kim, Hong Il
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.6
    • /
    • pp.641-649
    • /
    • 2017
  • Multivariate confidence regions were defined using a chi-square distribution function under a normal assumption and were represented with ellipse and ellipsoid types of bivariate and trivariate normal distribution functions. In this work, an alternative confidence region using the multivariate quantile vectors is proposed to define the normal distribution as well as any other distributions. These lower and upper bounds could be obtained using quantile vectors, and then the appropriate region between two bounds is referred to as the quantile confidence region. It notes that the upper and lower bounds of the bivariate and trivariate quantile confidence regions are represented as a curve and surface shapes, respectively. The quantile confidence region is obtained for various types of distribution functions that are both symmetric and asymmetric distribution functions. Then, its coverage rate is also calculated and compared. Therefore, we conclude that the quantile confidence region will be useful for the analysis of multivariate data, since it is found to have better coverage rates, even for asymmetric distributions.

Statistical Analysis of Simulation Output Ratios (시뮬레이션 출력비 추정량의 통계적 분석)

  • 홍윤기
    • Journal of the Korea Society for Simulation
    • /
    • v.3 no.1
    • /
    • pp.17-28
    • /
    • 1994
  • A statistical procedure is developed to estimate the relative difference between two parameters each obtained from either true model or approximate model. Double sample procedure is applied to find the additional number of simulation runs satisfying the preassigned absolute precision of the confidence interval. Two types of parameters, mean and standard deviation, are considered as the performance measures and tried to show the validity of the model by examining both queues and inventory systems. In each system it is assumed that there are three distinct means and their own standard deviations and they form the simultaneous confidence intervals but with control in the sense that the absolute precision for each confidence interval is bounded on the limits with preassigned confidence level. The results of this study may contribute to some situations, for instance, first, we need a statistical method to compare the effectiveness between two alternatives, second, we find the adquate number of replications with any level of absolute precision to avoid the unrealistic cost of running simulation models, third, we are interested in analyzing the standard deviation of the output measure, ..., etc.

  • PDF

A Comparison of Confidence Intervals for the Reliability of the Stress-Strength Models with Explanatory Variables

  • Eun Sik Park;Jae Joo Kim;Sung Hyun Park
    • Communications for Statistical Applications and Methods
    • /
    • v.3 no.1
    • /
    • pp.73-85
    • /
    • 1996
  • In this paper, we consider the distribution-free confidence intervals for the reliability of the stress-strength model when the stress X and strength Y depend linearly on some explanatory variables z and w, respectively. We apply these confidence intervals to the Rocket-Motor data and compare the results to those of Guttman et al. (1988). Some simulation results show that the distribution-free confidence intervals have better performance for nonnormal errors compared to those of Guttman et al. (1988), which are designed for normal random variables in respect that the former yield the coverage levels closer to the nominal coverage level than the latter.

  • PDF

Likelihood Based Confidence Intervals for the Difference of Proportions in Two Doubly Sampled Data with a Common False-Positive Error Rate

  • Lee, Seung-Chun
    • Communications for Statistical Applications and Methods
    • /
    • v.17 no.5
    • /
    • pp.679-688
    • /
    • 2010
  • Lee (2010) developed a confidence interval for the difference of binomial proportions in two doubly sampled data subject to false-positive errors. The confidence interval seems to be adequate for a general double sampling model subject to false-positive misclassification. However, in many applications, the false-positive error rates could be the same. On this note, the construction of asymptotic confidence interval is considered when the false-positive error rates are common. The coverage behaviors of nine likelihood based confidence intervals are examined. It is shown that the confidence interval based Rao score with the expected information has good performance in terms of coverage probability and expected width.

CONFIDENCE INTERVALS ON THE AMONG GROUP VARIANCE COMPONENT IN A REGRESSION MODEL WITH AN UNBALANCED ONE-FOLD NESTED ERROR STRUCTURE

  • Park, Dong-Joon
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2002.11a
    • /
    • pp.141-146
    • /
    • 2002
  • In this article we consider the problem of constructing confidence intervals for a linear regression model with nested error structure. A popular approach is the likelihood-based method employed by PROC MIXED of SAS. In this paper, we examine the ability of MIXED to produce confidence intervals that maintain the stated confidence coefficient. Our results suggest the intervals for the regression coefficients work well, but the intervals for the variance component associated with the primary level cannot be recommended. Accordingly, we propose alternative methods for constructing confidence intervals on the primary level variance component. Computer simulation is used to compare the proposed methods. A numerical example and SAS code are provided to demonstrate the methods.

  • PDF

Alternative Confidence Intervals on the Sum of Variance Components in a Simple Regression Model with Unbalanced Nested Error Structure

  • Park Dong Joon;Lee Soo Jin
    • Communications for Statistical Applications and Methods
    • /
    • v.12 no.1
    • /
    • pp.87-100
    • /
    • 2005
  • In order to construct confidence intervals on the sum of variance components in a simple regression model with unbalanced nested error structure, alternative confidence intervals using Graybill and Wang(1980) and generalized inference concept introduced by Tsui and Weerahandi(1989) are proposed. Computer simulation programmed by SAS/IML is performed to compare the simulated confidence coefficients and average interval lengths of the proposed confidence intervals. A numerical example is provided to demonstrate the confidence intervals and to show consistency between the example and simulation results.

The Confidence Band of $ED_{100p}$ for the Simple Logistic Regression Model

  • Cho, Tae Kyoung;Shin, Mi Young
    • Communications for Statistical Applications and Methods
    • /
    • v.8 no.3
    • /
    • pp.581-588
    • /
    • 2001
  • The $ED_{100p}$ is that value of the dose associated with 100p% response rate in the analysis of quantal response data. Brand, Pinnock, and Jackson (1973) studied the confidence bands of $ED_{100p}$ obtained by solving extremal values algebraically on the ellipsoid confidence region of the parameters in the simple logistic regression model. In this paper, we develope and illustrate a simpler method for obtaining confidence bands for $ED_{100p}$ based on the rectangular confidence region of parameters.

  • PDF

The Influence of Extreme Value in Binomial Confidence Interval (이항 신뢰구간에서 극단값의 영향)

  • Ryu, Jea-Bok
    • Communications for Statistical Applications and Methods
    • /
    • v.18 no.5
    • /
    • pp.615-623
    • /
    • 2011
  • Several methods are used in interval estimation for binomial proportion; however the coverage probabilities of most confidence intervals depart from the confidence level when the binomial population proportion closes to 0 or 1 due to the extreme value. Vollset (1993), Agresti and Coull (1998), Newcombe (1998), and Brown et al. (2001) suggested methods to adjust the extreme value. This paper discusses the influence of extreme value in a binomial confidence interval through the numerical comparison of 6 confidence intervals.

Confidence Intervals and Joint Confidence Regions for the Two-Parameter Exponential Distribution based on Records

  • Asgharzadeh, A.;Abdi, M.
    • Communications for Statistical Applications and Methods
    • /
    • v.18 no.1
    • /
    • pp.103-110
    • /
    • 2011
  • Exponential distribution is widely adopted as a lifetime model. Many authors have considered the interval estimation of the parameters of two-parameter exponential distribution based on complete and censored samples. In this paper, we consider the interval estimation of the location and scale parameters and the joint confidence region of the parameters of two-parameter exponential distribution based on upper records. A simulation study is done for the performance of all proposed confidence intervals and regions. We also propose the predictive intervals of the future records. Finally, a numerical example is given to illustrate the proposed methods.