• Title/Summary/Keyword: statistical confidence

Search Result 1,002, Processing Time 0.02 seconds

Correlation analysis of radiation therapy position and dose factors for left breast cancer (좌측 유방암의 방사선치료 자세와 선량인자의 상관관계 분석)

  • Jeon, Jaewan;Park, Cheolwoo;Hong, Jongsu;Jin, Seongjin;Kang, Junghun
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.29 no.1
    • /
    • pp.37-48
    • /
    • 2017
  • Purpose: The most basic conditions of radiation therapy is to prevent unnecessary exposure of normal tissue. The risk factors that are important o evaluate the dose emitted to the lung and heart from radiation therapy for breast cancer. Therefore, comparing the dose factors of a normal tissue according to the radion treatment position and Seeking an effective radiation treatment for breast cancer through the analysis of the correlation relationship. Materials and Methods: Computed tomography was conducted among 30 patients with left breast cancer in supine and prone position. Eclipse Treatment Planning System (Ver.11) was established by computerized treatment planning. Using the DVH compared the incident dose to normal tissue by position. Based on the result, Using the SPSS (ver.18) analyzed the dose in each normal tissue factors and Through the correlation analysis between variables, independent sample test examined the association. Finally The HI, CI value were compared Using the MIRADA RTx (ver. ad 1.6) in the supine, prone position Results: The results of computerized treatment planning of breast cancer in the supine position were V20, $16.5{\pm}2.6%$ and V30, $13.8{\pm}2.2%$ and Mean dose, $779.1{\pm}135.9cGy$ (absolute value). In the prone position it showed in the order $3.1{\pm}2.2%$, $1.8{\pm}1.7%$, $241.4{\pm}138.3cGy$. The prone position showed overall a lower dose. The average radiation dose 537.7 cGy less was exposured. In the case of heart, it showed that V30, $8.1{\pm}2.6%$ and $5.1{\pm}2.5%$, Mean dose, $594.9{\pm}225.3$ and $408{\pm}183.6cGy$ in the order supine, prone position. Results of statistical analysis, Cronbach's Alpha value of reliability analysis index is 0.563. The results of the correlation analysis between variables, position and dose factors of lung is about 0.89 or more, Which means a high correlation. For the heart, on the other hand it is less correlated to V30 (0.488), mean dose (0.418). Finally The results of independent samples t-test, position and dose factors of lung and heart were significantly higher in both the confidence level of 99 %. Conclusion: Radiation therapy is currently being developed state-of-the-art linear accelerator and a variety of treatment plan technology. The basic premise of the development think normal tissue protection around PTV. Of course, if you treat a breast cancer patient is in the prone position it take a lot of time and reproducibility of set-up problems. Nevertheless, As shown in the experiment results it is possible to reduce the dose to enter the lungs and the heart from the prone position. In conclusion, if a sufficient treatment time in the prone position and place correct confirmation will be more effective when the radiation treatment to patient.

  • PDF

A Study on the Improvement of Recommendation Accuracy by Using Category Association Rule Mining (카테고리 연관 규칙 마이닝을 활용한 추천 정확도 향상 기법)

  • Lee, Dongwon
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.2
    • /
    • pp.27-42
    • /
    • 2020
  • Traditional companies with offline stores were unable to secure large display space due to the problems of cost. This limitation inevitably allowed limited kinds of products to be displayed on the shelves, which resulted in consumers being deprived of the opportunity to experience various items. Taking advantage of the virtual space called the Internet, online shopping goes beyond the limits of limitations in physical space of offline shopping and is now able to display numerous products on web pages that can satisfy consumers with a variety of needs. Paradoxically, however, this can also cause consumers to experience the difficulty of comparing and evaluating too many alternatives in their purchase decision-making process. As an effort to address this side effect, various kinds of consumer's purchase decision support systems have been studied, such as keyword-based item search service and recommender systems. These systems can reduce search time for items, prevent consumer from leaving while browsing, and contribute to the seller's increased sales. Among those systems, recommender systems based on association rule mining techniques can effectively detect interrelated products from transaction data such as orders. The association between products obtained by statistical analysis provides clues to predicting how interested consumers will be in another product. However, since its algorithm is based on the number of transactions, products not sold enough so far in the early days of launch may not be included in the list of recommendations even though they are highly likely to be sold. Such missing items may not have sufficient opportunities to be exposed to consumers to record sufficient sales, and then fall into a vicious cycle of a vicious cycle of declining sales and omission in the recommendation list. This situation is an inevitable outcome in situations in which recommendations are made based on past transaction histories, rather than on determining potential future sales possibilities. This study started with the idea that reflecting the means by which this potential possibility can be identified indirectly would help to select highly recommended products. In the light of the fact that the attributes of a product affect the consumer's purchasing decisions, this study was conducted to reflect them in the recommender systems. In other words, consumers who visit a product page have shown interest in the attributes of the product and would be also interested in other products with the same attributes. On such assumption, based on these attributes, the recommender system can select recommended products that can show a higher acceptance rate. Given that a category is one of the main attributes of a product, it can be a good indicator of not only direct associations between two items but also potential associations that have yet to be revealed. Based on this idea, the study devised a recommender system that reflects not only associations between products but also categories. Through regression analysis, two kinds of associations were combined to form a model that could predict the hit rate of recommendation. To evaluate the performance of the proposed model, another regression model was also developed based only on associations between products. Comparative experiments were designed to be similar to the environment in which products are actually recommended in online shopping malls. First, the association rules for all possible combinations of antecedent and consequent items were generated from the order data. Then, hit rates for each of the associated rules were predicted from the support and confidence that are calculated by each of the models. The comparative experiments using order data collected from an online shopping mall show that the recommendation accuracy can be improved by further reflecting not only the association between products but also categories in the recommendation of related products. The proposed model showed a 2 to 3 percent improvement in hit rates compared to the existing model. From a practical point of view, it is expected to have a positive effect on improving consumers' purchasing satisfaction and increasing sellers' sales.