Since one texture property(i.e coarseness, orientation, regularity, granularity) for ultrasound liver ages was not sufficient enough to classify the characteristics of livers, we used multi texture vectors tracted from ultrasound liver images and a statistical classifier. Multi texture vectors are selected among the feature vectors of the normal liver, fat liver and cirrhosis images which have a good separability in those ultrasound liver images. The statistical classifier uses multi texture vectors as input vectors and classifies ultrasound liver images for each multi texture vector by the Bayes decision rule. Then the decision of the liver disease is made by choosing the maximum value from the averages of a posteriori probability for each multi texture vector In our simulation, we obtained higtler correct ratio than that of other methods using single feature vector, for the test set the correct ratio is 94% in the normal liver, 84% in the fat liver and 86% in the cirrhosis liver.
통계적 모먼트(statistical moments)에 의한 변조형태 분류기(classifier)는 PSK 신호를 분류하는데 자주 이용되어 왔다. 이전에 사용된 분류기는 수신된 신호로부터 추출하기 어려운 신호위상 샘플의 통계적 모먼트를 이용하였으나, 본 논문에서는 확률변수변환을 통한 복조된 신호의 모먼트를 이용하여 PSK 신호를 분류하기 위한 새로운 분류기를 제안한다. 복조된 신호는 종래의 방법으로 쉽게 추출이 될 수 있다. PSK 신호에 대해 제안된 분류기의 성능평가는 복조된 신호의 정확한 위상분포를 사용하여 가산성 백색가우스잡음(AWGN)하에서 오분류확률(probability of misclassification)로 분석하였다. 분석결과 동기 시스팀이 비동기 시스팀보다 n이 4이고 오분류확률이 10 일때 BPSK에 있어서는 4dB, QPSK에 있어서는 3dB 더 우수함을 알 수 있었다.
Communications for Statistical Applications and Methods
/
제17권1호
/
pp.17-27
/
2010
분류분석에 사용되는 k-최근접이웃 분류기에 유전알고리즘을 적용하여 의미 있는 변수들과 이들에 대한 가중치 그리고 적절한 k를 동시에 선택하는 알고리즘을 제시하였다. 다양한 실제 자료에 대하여 기존의 여러 방법들과 교차타당성 방법을 통하여 비교한 결과 효과적인 것으로 나타났다.
In this paper, we propose an adaptive classifier based on uncertainty of features for 3D planar object recognition. First, we investigate the uncertainty of depth information and the feature values of 3D planar object by numerical method. And, we observed that the statistical behavior of feature is dependent on the position and orientation of objects. After that, the approximation of the statistical behavior is executed. Subsequently, the recognition procedure is executed by the adaptive classifier. By computer simulation, we confirmed that the proposed classifier is useful for 3D planar object recognition.
The research for the classification of the natural defects in welding zone is performd using the neuro-pattern recognition technology. The signal pattern recognition package including the user's defined function is developed to perform the digital signal processing, feature extraction, feature selection and classifier selection, The neural network classifier and the statistical classifiers such as the linear discriminant function classifier and the empirical Bayesian calssifier are compared and discussed. The neuro-pattern recognition technique is applied to the classificaiton of such natural defects as root crack, incomplete penetration, lack of fusion, slag inclusion, porosity, etc. If appropriately learned, the neural network classifier is concluded to be better than the statistical classifiers in the classification of the natural welding defects.
Park, Chan-Kyu;Kim, Jae-Hong;Sohn, Joo-Chan;Choi, Ho-Jin
KSII Transactions on Internet and Information Systems (TIIS)
/
제5권10호
/
pp.1751-1768
/
2011
Falls are one of the most concerned accidents for elderly people and often result in serious physical and psychological consequences. Many researchers have studied fall detection techniques in various domain, however none released to a commercial product satisfying user requirements. We present a systematic modeling and evaluating procedure for best classification performance and then do experiments for comparing the performance of six procedures to get a statistical classifier based wrist-type fall detector to prevent dangerous consequences from falls. Even though the wrist may be the most difficult measurement location on the body to discern a fall event, the proposed feature deduction process and fall classification procedures shows positive results by using data sets of fall and general activity as two classes.
본 연구에서는 초음파 신호형상인식법을 이용하여 용접부의 인공 결함을 분류하기 위한 연구를 실시하였다. 이를 위해 신호처리 및 특징 변수를 추출할 때에 많은 사용자 정의 변수를 가지는 신호 형상 인식 패키지를 개발하였으며 디지탈 신호처리, 특징 변수 추출, 특징 변수의 선택, 분류기 선정 등의 과정을 일괄적으로 처리하였다. 특히, 선형 분류기, 경험적 Bayesian 분류기 등의 통계적 분류기와 신경회로망 분류기를 함께 사용하여 비교, 검토하였다. 이에 관한 적용 연구로 노치와 구멍으로 이루어진 인공 결함을 분류하였다. 그 결과 인공결함 분류에서 높은 인식률을 얻었으며, 특히 적절히 학습 시켰을 경우 신경회로망 분류기가 통계적 분류기에 비하여 인식률 면에서 유리하였다.
이 연구는 지도학습 방법을 이용한 단어 중의성 해소가 최적의 성능을 가져오는 통계적 자질선정 방법과 다양한 문맥의 크기를 파악하고자 하였다. 실험집단인 한글 신문기사에 자질선정 기준으로 정보획득량, 카이제곱 통계량, 문헌빈도, 적합성 함수 등을 적용하였다. 실험 결과, 텍스트 범주화 기법과 같이 단어 중의성 해소에서도 자질선정 방법이 매우 유용한 수단이 됨을 알 수 있었다. 실험에 적용한 자질선중 기준 중에 정보획득량이 가장 좋은 성능을 보였다. SVM 분류기는 자질집합 크기와 문맥 크기가 클수록 더 좋은 성능을 보여 자질선정에 영향을 받지 않았다. 나이브 베이즈 분류기는 10% 정도의 자질집합 크기에서 가장 좋은 성능을 보였다. kNN의 경우 10% 이하의 자질에서 가장 좋은 성능을 보였다. 단어 중의성 해소를 위한 자질선정을 적용할 때 작은 자질집합 크기와 큰 문맥 크기를 조합하거나, 반대로 큰 자질집합 크기와 작은 문맥 크기를 조합하면 성능을 극대화 할 수 있다.
본 논문에서는 통계적 분류방법인 최대유사 분류법(MLC: maximum likelihood classifier)과 신경회로망을 이용한 분류법인 다층퍼셉트론(MLP: multiayer perceptron) 분류법간의 분류성능을 비교 평가하였으며, 또한 MLP 분류법에서 문제가 되고 있는 학습률(learning rate), 운동량 상수(,momentum constant), 은닉층의 노드수에 따른 MLP 분류법의 분류성능을 평가하였다. 부산지역에 대한 실제 인공위성 화상데이타인 Landsat TM 화상데이타를 사용하여 MLP 분류법과 MLC 분류법의 성능을 비교한 결과 MLP 분류법의 성능이 더 우사함을 확인할 수 있었으며, 학습률, 운동량 상수 및 은닉층의 노드수에 따른 분류성능도 평가하였다.
Classification tree is one of the most suitable base learners for ensemble. For past decade, it was found that bagging gives the most accurate prediction when used with unpruned tree and boosting with stump. Researchers have tried to understand the relationship between the size of trees and the accuracy of ensemble. With experiment, it is found that large trees make boosting overfit the dataset and stumps help avoid it. It means that the accuracy of each classifier needs to be sacrificed for better weighting at each iteration. Hence, split effect in boosting can be explained with the trade-off between the accuracy of each classifier and better weighting on the misclassified points. In bagging, combining larger trees give more accurate prediction because bagging does not have such trade-off, thus it is advisable to make each classifier as accurate as possible.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.