• Title/Summary/Keyword: statistical approach

Search Result 2,375, Processing Time 0.028 seconds

UNIFYING STATIONARY EQUATIONS FOR GENERALIZED CANONICAL CORRELATION ANALYSIS

  • Kang Hyun-Cheol;Kim Kee-Young
    • Journal of the Korean Statistical Society
    • /
    • v.35 no.2
    • /
    • pp.143-156
    • /
    • 2006
  • In the present paper, various solutions for generalized canonical correlation analysis (GCCA) are considered depending on the criteria and constraints. For the comparisons of some characteristics of the solutions, we provide with certain unifying stationary equations which might to also useful to obtain various generalized canonical correlation analysis solutions. In addition, we suggest an approach for the generalized canonical correlation analysis by exploiting the concept of maximum eccentricity originally de-signed to test the internal independence structure. The solutions, including new one, are compared through unifying stationary equations and by using some numerical illustrations. A type of iterative procedure for the GCCA solutions is suggested and some numerical examples are provided to illustrate several GCCA methods.

On Adaptation to Sparse Design in Bivariate Local Linear Regression

  • Hall, Peter;Seifert, Burkhardt;Turlach, Berwin A.
    • Journal of the Korean Statistical Society
    • /
    • v.30 no.2
    • /
    • pp.231-246
    • /
    • 2001
  • Local linear smoothing enjoys several excellent theoretical and numerical properties, an in a range of applications is the method most frequently chosen for fitting curves to noisy data. Nevertheless, it suffers numerical problems in places where the distribution of design points(often called predictors, or explanatory variables) is spares. In the case of univariate design, several remedies have been proposed for overcoming this problem, of which one involves adding additional ″pseudo″ design points in places where the orignal design points were too widely separated. This approach is particularly well suited to treating sparse bivariate design problem, and in fact attractive, elegant geometric analogues of unvariate imputation and interpolation rules are appropriate for that case. In the present paper we introduce and develop pseudo dta rules for bivariate design, and apply them to real data.

  • PDF

Median Control Chart using the Bootstrap Method

  • Lim, Soo-Duck;Park, Hyo-Il;Cho, Joong-Jae
    • Communications for Statistical Applications and Methods
    • /
    • v.14 no.2
    • /
    • pp.365-376
    • /
    • 2007
  • This research considers to propose the control charts using median for the location parameter. In order to decide the control limits, we apply several bootstrap methods through the approach obtaining the confidence interval except the standard bootstrap method. Then we illustrate our procedure using an example and compare the performance among the various bootstrap methods by obtaining the length between control limits through the simulation study. The standard bootstrap may be apt to yield shortest length while the bootstrap-t method, the longest one. Finally we comment briefly about some specific features as concluding remarks.

Warranty Analysis Based on Different Lengths of Warranty Periods

  • Park, Min-Jae
    • Communications for Statistical Applications and Methods
    • /
    • v.18 no.3
    • /
    • pp.277-286
    • /
    • 2011
  • Global companies can sell their products with dierent warranty periods based on location and times. Customers can select the length of warranty on their own if they pay an additional fee. In this paper, we consider the warranty period and the repair time limit as random variables. A two-dimensional warranty policy is considered with repair times and failure times. The repair times are considered within the repair time limit and the failure times are considered within the warranty period. Under the non-renewable warranty policy, we obtain the expected number of warranty services and their variances in the censored area by warranty period and repair time limit to conduct a warranty cost analysis. Numerical examples are discussed to demonstrate the applicability of the methodologies and results using field data based on the proposed approach in the paper.

Portfolio Selection for Socially Responsible Investment via Nonparametric Frontier Models

  • Jeong, Seok-Oh;Hoss, Andrew;Park, Cheolwoo;Kang, Kee-Hoon;Ryu, Youngjae
    • Communications for Statistical Applications and Methods
    • /
    • v.20 no.2
    • /
    • pp.115-127
    • /
    • 2013
  • This paper provides an effective stock portfolio screening tool for socially responsible investment (SRI) based upon corporate social responsibility (CSR) and financial performance. The proposed approach utilizes nonparametric frontier models. Data envelopment analysis (DEA) has been used to build SRI portfolios in a few previous works; however, we show that free disposal hull (FDH), a similar model that does not assume the convexity of the technology, yields superior results when applied to a stock universe of 253 Korean companies. Over a four-year time span (from 2006 to 2009) the portfolios selected by the proposed method consistently outperform those selected by DEA as well as the benchmark.

Bayesian analysis of random partition models with Laplace distribution

  • Kyung, Minjung
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.5
    • /
    • pp.457-480
    • /
    • 2017
  • We develop a random partition procedure based on a Dirichlet process prior with Laplace distribution. Gibbs sampling of a Laplace mixture of linear mixed regressions with a Dirichlet process is implemented as a random partition model when the number of clusters is unknown. Our approach provides simultaneous partitioning and parameter estimation with the computation of classification probabilities, unlike its counterparts. A full Gibbs-sampling algorithm is developed for an efficient Markov chain Monte Carlo posterior computation. The proposed method is illustrated with simulated data and one real data of the energy efficiency of Tsanas and Xifara (Energy and Buildings, 49, 560-567, 2012).

A Unit Root Test via a Discrete Cosine Transform (이산코사인변환을 이용한 단위근 검정)

  • Lee, Go-Un;Yeo, In-Kwon
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.1
    • /
    • pp.35-43
    • /
    • 2011
  • In this paper, we introduce a unit root test via discrete cosine transform in the AR(1) process. We first investigate the statistical properties of DCT coefficients under the stationary AR(1) process and the random walk process in order to verify the validity of the proposed method. A bootstrapping approach is proposed to induce the distribution of the test statistic under the unit root. We performed simulation studies for comparing the powers of the Dickey-Fuller test and the proposed test.

A Case Study of Planning Strategy for Customer Satisfaction in Advanced Markets (선진 시장에서의 소비자만족 전략 수립 방안에 관한 사례연구)

  • 권순창;박수진;윤원영
    • Journal of Korean Society for Quality Management
    • /
    • v.31 no.2
    • /
    • pp.143-164
    • /
    • 2003
  • In this paper, we use and apply statistical tools to planning marketing strategy in advanced markets. New comers with low brand awareness in advanced markets can not attain high profit easily and need more effective strategic approach. In this paper, an effective and practical procedure is proposed to plan marketing strategies to satisfy the customer and increase the market share in advanced markets. The procedure consists of 5 steps : market survey, determining target brand, evaluation of brand attributes, gap analysis to determine the goal, and correlation analysis for effective improvement method. A case study is studied in the European market for electric appliances, between a Korean company and other companies. Various statistical tools are used to analyze the phenomena and some important conclusions are derived for effective marketing.

Nonlinear approach to modeling heteroscedasticity in transfer function analysis (시계열 전이함수분석 이분산성의 비선형 모형화)

  • 황선영;김순영;이성덕
    • The Korean Journal of Applied Statistics
    • /
    • v.15 no.2
    • /
    • pp.311-321
    • /
    • 2002
  • Transfer function model(TFM) capturings conditional heteroscedastic pattern is introduced to analyze stochastic regression relationship between the two time series. Nonlinear ARCH concept is incorporated into the TFM via threshold ARCH and beta- ARCH models. Steps for statistical analysis of the proposed model are explained along the lines of the Box & Jenkins(1976, ch. 10). For illustration, dynamic analysis between KOSPI and NASDAQ is conducted from which it is seen that threshold ARCH performs the best.

Bayesian Method for Combining Results from Different Poisson Experiments

  • Cho, Jang Sik;Kim, Dal Ho
    • Communications for Statistical Applications and Methods
    • /
    • v.7 no.2
    • /
    • pp.533-540
    • /
    • 2000
  • The problem of information related to I poission experiments, each having a distinct failure rate $\theta$i I=1,2,…,I, is considered. Instead of using a standard exchangeable prior for $\theta$=($\theta$1,$\theta$2,…,$\theta$I), we consider a partition of the experiments and take the $\theta$i's belonging to the same partition subgroup to be exchangeable and the $\theta$i's belonging to distinct subgroups to be independent. And we perform Gibbs sampling approach for Bayesian inference on $\theta$ conditional on a partition. Numerical study using real data is provided.

  • PDF