Various methodologies for the genetic analysis of longitudinal data have been proposed and applied to data from large-scale genome-wide association studies (GWAS) to identify single nucleotide polymorphisms (SNPs) associated with traits of interest and to detect SNP-time interactions. We recently proposed a grid-based Bayesian mixed model for longitudinal genetic data and showed that our Bayesian method increased the statistical power compared to the corresponding univariate method and well detected SNP-time interactions. In this paper, we further analyze longitudinal obesity-related traits such as body mass index, hip circumference, waist circumference, and waist-hip ratio from Korea Association Resource data to evaluate the proposed Bayesian method. We first conducted GWAS analyses of cross-sectional traits and combined the results of GWAS analyses through a meta-analysis based on a trajectory model and a random-effects model. We then applied our Bayesian method to a subset of SNPs selected by meta-analysis to further discover SNPs associated with traits of interest and SNP-time interactions. The proposed Bayesian method identified several novel SNPs associated with longitudinal obesity-related traits, and almost 25% of the identified SNPs had significant p-values for SNP-time interactions.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.16
no.12
/
pp.3960-3975
/
2022
To analyze and compare the most influencing factors on cloud computing adoption (CCA) in the healthcare organization, a systematic review and meta-analyses of studies was performed using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) and Cochrane collaboration recommendations. A search of PubMed, ScienceDirect, Springer, Wiley Online, and Taylor & Francis Online digital libraries (From inception to January 19, 2022) was performed. A total of 17 studies met the defined studies' inclusion and exclusion criteria. Statistical significance difference favoring most influencing factors on CCA were (MD 0.76, 95% CI -1.48 - 3.01, p <0.00001, I2 = 90%), (MD 1.40, 95% CI -4.76 - 7.55, p < 0.00007, I2 = 97%) (MD 0.17, 95% CI -2.69 - 3.03, p<0.00001, I2 = 96%) for technology vs. organizational, technology vs. environmental and business vs. human factors, respectively. Organizational and environmental factors had greater impacts on CCA compared with technological factors. Moreover, business factors were more influential than the human factors.
The benthic macroinvertebrates index (BMI) was developed based on the 5-day biochemical oxygen demand (BOD5), which is the amount of biodegradable organic matter in stream water. However, benthic macroinvertebrates mainly live in the streambed substrate and are affected by the interaction of water quality and substrate. This study was conducted to examine the interactive relationship between water quality items (BOD5, total phosphorus (TP), total suspended solids (TSS)) and substrate with BMI by performing statistical analyses (four-way analysis of variance, Pearson's correlation analysis, partial correlation analysis and multiple regression analysis). The data used in the analyses were collected from 19,915 sampling units at 1,937 sites in South Korea from 2010 to 2020. The interaction effect between BOD5 and substrate types was confirmed through a four-way analysis of variance. Partial correlation analysis and multiple regression analysis estimated the degree of influence on the change in BMI value in the order of mean grain size of the substrate as (𝜱m) > BOD5 > TP > TSS. BMI can be regarded as an index that evaluates the comprehensive effects of water quality and streambed status, although it is an index that was developed based on the amount of biodegradable organic matter in a water column.
International Journal of Advanced Culture Technology
/
v.11
no.3
/
pp.156-162
/
2023
The purpose of this study was to examine the effects of peer scaffolding on the writing fluency of English language learners. This study was intended to confirm that peer scaffolding in English as a foreign language (EFL) writing classes can improve students' English proficiency. An analysis of 20 EFL learners studying at a university in Gyeonggi Province was conducted based on the English Proficiency Test. In this study, 20 intermediate learners with similar proficiency levels were included in the sample. Randomly, 10 students were designated as members of the control group, and 10 students were designated as members of the experimental group. In the experimental group, students practiced essay writing, while a skilled student provided scaffolding for a less skilled student. A variety of tools were used to gather data, including tests, questionnaires, and interviews Statistical analyses of quantitative data were conducted using t-tests for independent samples, whereas analyses of qualitative data were conducted based on themes. Pre-test results indicated a significant value of sig. =0.87, which was higher than α = 0.05. According to the results of this study, the writing performance of both experimental and control groups of students was equal and homogeneous prior to treatment. However, there were significant differences between the writing of students in the two groups after the completion of the program. Due to the post-test analysis of the writing test, the test resulted in a sig. =0 .043, a value lower than α = 0.05. As a result, the experimental group participants showed a marked improvement in their writing abilities after treatment.
Most of the experimental, theoretical, and numerical studies on the stability of functionally graded composites are deterministic, while there are full of complex interactions of variables with an inherently probabilistic nature, this paper presents a non-intrusive framework to investigate the stochastic nonlinear buckling behaviors of porous functionally graded cylindrical shells exposed to inevitable source-uncertainties. Euler-Lagrange equations are theoretically derived based on the three variable refined shear deformation theory. Closed-form solutions for the shell buckling loads are achieved by solving the deterministic eigenvalue problems. The analytical results are verified with numerical results obtained from finite element analyses that are conducted in the commercial software ABAQUS. The non-intrusive framework is completed by integrating the Monte Carlo simulation with the verified closed-form solutions. The convergence studies are performed to determine the effective pseudorandom draws of the simulation. The accuracy and efficiency of the framework are verified with statistical results that are obtained from the first and second-order perturbation techniques. Eleven cases of individual and compound uncertainties are investigated. Sensitivity analyses are conducted to figure out the five cases that have profound perturbative effects on the shell buckling loads. Complete probability distributions of the first three critical buckling loads are completely presented for each profound uncertainty case. The effects of the shell thickness, volume fraction index, and stochasticity degree on the shell buckling load under compound uncertainties are studied. There is a high probability that the shell has non-unique buckling modes in stochastic environments, which should be known for reliable analysis and design of engineering structures.
A probabilistic seismic damage analysis is an essential procedure to identify seismically vulnerable structures, prioritize the seismic retrofit, and ultimately minimize the overall seismic risk. To assess the seismic risk of multiple structures within a region, a large number of nonlinear time-history structural analyses must be conducted and studied. As a result, each assessment requires high computing resources. To overcome this limitation, we explore a deep learning-based metamodel to enable the prediction of the mean and the standard deviation of the seismic damage distribution of track-on steel-plate girder railway bridges in Korea considering the geometric variation. For machine learning training, nonlinear dynamic time-history analyses are performed to generate 800 high-fidelity datasets on the seismic response. Through intensive trial and error, the study is concentrated on developing an optimal machine learning architecture with the pre-identified variables of the physical configuration of the bridge. Additionally, the prediction performance of the proposed method is compared with a previous, well-defined, response surface model. Finally, the statistical testing results indicate that the overall performance of the deep-learning model is improved compared to the response surface model, as its errors are reduced by as much as 61%. In conclusion, the model proposed in this study can be effectively deployed for the seismic fragility and risk assessment of a region with a large number of structures.
Objective: The aim of the present study was to develop and validate a recognition scale for childcare teachers' rights. Methods: Statistical methods for data analysis involved the use of SPSS 20.0 and AMOS 20.0. To confirm the reliability and validity of the developed scale, various analyses, including item quality assessment, item discrimination, exploratory factor analysis, confirmatory factor analysis, and Pearson correlation analysis, were conducted. The maximum likelihood estimation method was employed for model fitting. Goodness of fit was assessed using SRMR, RMSEA and its 90% confidence interval, CFI, and TLI. Through these analyses, the scale's reliability and validity exceeded the standard. Consequently, 5 factors and 30 questions were ultimately selected as the recognition scale for childcare teachers' rights. Results: First, a recognition scale for childcare teachers' rights was developed to reflect changes in childcare settings. Second, an objective measurement was incorporated into the recognition scale of childcare teachers' rights. Third, the analysis using the proposed scale revealed a correlation between the recognition of childcare teachers' rights and life satisfaction. Conclusion/Implications: The study developed a scale capable of objectively measuring the recognition of childcare teachers' rights.
Measurement or prediction of compression index (Cc) of soils is essential for assessment of total and differential settlement of structures. It is a well-known fact that this parameter is controlled by several index identifiers of soil including initial void ratio, Atterberg limits, overconsolidation ratio, specific gravity, etc. Many studies in the past proposed relationships for prediction of Cc based on different index properties. Therefore, this study aims to present a comparison of previously proposed equations for estimation of Cc. Data from literature was compiled, and a total of 90 and 623 test results on remolded and undisturbed specimens were used to question the validity of previously proposed equations. Nevertheless, the modeling ability of 7 and 12 equations for estimation of Cc of remolded and undisturbed soils were questioned by use of compiled data. Moreover, new empirical relationships based on initial void ratio and toughness limit for prediction of Cc was proposed by use of nonlinear multivariable regression and evolutionary based regression analyses. The results are promising-the performances of models established are quite acceptable, which are verified by statistical analyses.
Scientific exploration of how occupational health risks relate with occupational illnesses are essential for mitigating health-related issues in industries. This study analyzed the risk scores obtained by occupational health risk assessments at 3,172 manufacturing companies and examined their effects on occupational illness. Statistical analyses revealed that companies with an occupational health manager (scored 89.1 out of 100) had significantly higher activity scores of health management compared to those without (78.2). However, companies with a history of occupational illness (79.1) or those classified as high-risk industries (85.2) had significantly lower activity scores than their counterparts (81.7, 87.3). In addition, regression analyses using factor analysis showed that latent risk factors such as cardiovascular disease/job stress, health management, and musculoskeletal problem significantly influenced the risk of occupational illness. The activity factors such as health management, work environment management, and regulatory complaisance significant impacted the reduction of occupational illness. The findings of this study can be used to improve the occupational health risk assessment method and utilized in effectively managing occupational risks in industries.
This study was carried out to investigate safety evaluation of IGEs separated and refined from bovine milk and commercial recombinant human IGFs. In order to evaluate toxicity of these samples, acute toxicity test and short term toxicity test were investigated with IGF-I separated and refined from colostrum and commercial recombinant human IGF-I from R&D systems company. for acute toxicity test, we selected recombinant human IGF-I from R&D systems company and establish one control group and three dose-level groups(0, 10, 20 and 50 $\mu\textrm{g}$ per rat). We have intravenously injected tail of rats with selected sample once. After 20 days, pathological cellular tissue analyses were investigated with liver, kidney and spleen of 12 rats in all test groups. However, Morbid tissue and abnormal statistical results were not discovered in all cellular tissues. For short term toxicity test, we selected IGF-I separated and refined from colostrum and establish one control group and three dose-level groups(0, 5, 10 and 15 $\mu\textrm{g}$/day per rat). Rats were orally injected with selected sample once a day during two weeks. After short term toxicity test period, Pathological cellular tissue analyses were investigate with liver, kidney and spleen of 12 rats in all test groups. However, Morbid tissue and abnormal statistical results were not discovered in all cellular tissues. These results suggest that IGF-I treated groups show no significant toxicological findings with changes of body weight, food consumption, water consumption, and pathological findings compared with control groups.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.