• 제목/요약/키워드: stationary excitation

검색결과 71건 처리시간 0.019초

Optimization of active vibration control for random intelligent truss structures under non-stationary random excitation

  • Gao, W.;Chen, J.J.;Hu, T.B.;Kessissoglou, N.J.;Randall, R.B.
    • Structural Engineering and Mechanics
    • /
    • 제18권2호
    • /
    • pp.137-150
    • /
    • 2004
  • The optimization of active bars' placement and feedback gains of closed loop control system for random intelligent truss structures under non-stationary random excitation is presented. Firstly, the optimal mathematical model with the reliability constraints on the mean square value of structural dynamic displacement and stress response are built based on the maximization of dissipation energy due to control action. In which not only the randomness of the physics parameters of structural materials, geometric dimensions and structural damping are considered simultaneously, but also the applied force are considered as non-stationary random excitation. Then, the numerical characteristics of the stationary random responses of random intelligent structure are developed. Finally, the rationality and validity of the presented model are demonstrated by an engineering example and some useful conclusions are obtained.

Seismic design of structures using a modified non-stationary critical excitation

  • Ashtari, P.;Ghasemi, S.H.
    • Earthquakes and Structures
    • /
    • 제4권4호
    • /
    • pp.383-396
    • /
    • 2013
  • In earthquake engineering area, the critical excitation method is an approach to find the most severe earthquake subjected to the structure. However, given some earthquake constraints, such as intensity and power, the critical excitations have spectral density functions that often resonate with the first modes of the structure. This paper presents a non-stationary critical excitation that is capable of exciting the main modes of the structure using a non-uniform power spectral density (PSD) that is similar to natural earthquakes. Thus, this paper proposes a new method to estimate the power and intensity of earthquakes. Finally, a new method for the linear seismic design of structures using a modified non-stationary critical excitation is proposed.

Nonstationary Random Process를 이용한 인공지진파 발생 -설계응답스펙트럼에 의한 파워스펙트럼의 조정- (Generation of Artificial Earthquake Ground Motions using Nonstationary Random Process-Modification of Power Spectrum Compatible with Design Response Spectrum-)

  • 김승훈
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1999년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Spring
    • /
    • pp.61-68
    • /
    • 1999
  • In the nonlinear dynamic structural analysis the given ground excitation as an input should be well defined. Because of the lack of recorded accelerograms in Korea it is required to generate an artificial earthquake by a stochastic model of ground excitation with various dynamic properties rather than recorded accelerograms. It is well known that earthquake motions are generally non-stationary with time-varying intensity and frequency content. Many researchers have proposed non-stationary random process models. Yeh and Wen (1990) proposed a non-stationary modulation function and a power spectral density function to describe such non-stationary characteristics. Satio and Wen(1994) proposed a non-stationary stochastic process model to generate earthquake ground motions which are compatible with design reponse spectrum at sites in Japan. this paper shows the process to modify power spectrum compatible with target design response spectrum for generating of nonstationary artificial earthquake ground motions. Target reponse spectrum is chosen by ATC14 to calibrate the response spectrum according to a give recurrence period.

  • PDF

Combinatorial continuous non-stationary critical excitation in M.D.O.F structures using multi-peak envelope functions

  • Ghasemi, S. Hooman;Ashtari, P.
    • Earthquakes and Structures
    • /
    • 제7권6호
    • /
    • pp.895-908
    • /
    • 2014
  • The main objective of critical excitation methods is to reveal the worst possible response of structures. This goal is accomplished by considering the uncertainties of ground motion, which is subjected to the appropriate constraints, such as earthquake power and intensity limit. The concentration of this current study is on the theoretical optimization aspect, as is the case with the majority of conventional critical excitation methods. However, these previous studies on critical excitation lead to a discontinuous power spectral density (PSD). This paper introduces some critical excitations which contain proper continuity in frequency domain. The main idea for generating such continuous excitations stems from the combination of two continuous functions. On the other hand, in order to provide a non-stationary model, this paper attempts to present an appropriate envelope function, which unlike the previous envelope functions, can properly cover the natural earthquakes' accelerograms based on multi-peak conditions. Finally, the proposed method is developed into the multiple-degree-of-freedom (M.D.O.F) structures.

Non-stationary vibration and super-harmonic resonances of nonlinear viscoelastic nano-resonators

  • Ajri, Masoud;Rastgoo, Abbas;Fakhrabadi, Mir Masoud Seyyed
    • Structural Engineering and Mechanics
    • /
    • 제70권5호
    • /
    • pp.623-637
    • /
    • 2019
  • This paper analyzes the non-stationary vibration and super-harmonic resonances in nonlinear dynamic motion of viscoelastic nano-resonators. For this purpose, a new coupled size-dependent model is developed for a plate-shape nano-resonator made of nonlinear viscoelastic material based on modified coupled stress theory. The virtual work induced by viscous forces obtained in the framework of the Leaderman integral for the size-independent and size-dependent stress tensors. With incorporating the size-dependent potential energy, kinetic energy, and an external excitation force work based on Hamilton's principle, the viscous work equation is balanced. The resulting size-dependent viscoelastically coupled equations are solved using the expansion theory, Galerkin method and the fourth-order Runge-Kutta technique. The Hilbert-Huang transform is performed to examine the effects of the viscoelastic parameter and initial excitation values on the nanosystem free vibration. Furthermore, the secondary resonance due to the super-harmonic motions are examined in the form of frequency response, force response, Poincare map, phase portrait and fast Fourier transforms. The results show that the vibration of viscoelastic nanosystem is non-stationary at higher excitation values unlike the elastic ones. In addition, ignoring the small-size effects shifts the secondary resonance, significantly.

설계응답스펙트럼을 고려한 인공지진파의 발생에 관한 연구 (Generation of Artificial Earthquake Ground Motions considering Design Response Spectrum)

  • 정재경;한상환;이리형
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1999년도 봄 학술발표회 논문집
    • /
    • pp.145-150
    • /
    • 1999
  • In the nonlinear dynamic structural analysis, the given ground excitation as an input should be well defined. Because of the lack of recorded accelerograms in Korea, it is required to generate an artificial earthquake by a stochastic model of ground excitation with various dynamic properties rather than recorded accelerograms. It is well known that earthquake motions are generally non-stationary with time-varying intensity and frequency content. Many researchers have proposed non-stationary random process models. Yeh and Wen (1990) proposed a non-stationary stochastic process model which can be modeled as components with an intensity function, a frequency modulation function and a power spectral density function to describe such non-stationary characteristics. This paper shows the process to generate nonstationary artificial earthquake ground motions considering target design response spectrum chosen by ATC14.

  • PDF

Optimum parameters and performance of tuned mass damper-inerter for base-isolated structures

  • Jangid, Radhey Shyam
    • Smart Structures and Systems
    • /
    • 제29권4호
    • /
    • pp.549-560
    • /
    • 2022
  • The optimum damping and tuning frequency ratio of the tuned mass damper-inerter (TMDI) for the base-isolated structure is obtained using the numerical searching technique under stationary white-noise and filtered white-noise earthquake excitation. The minimization of the isolated structure's mean-square relative displacement and absolute acceleration, as well as the maximization of the energy dissipation index, were chosen as the criteria for optimality. Using a curve-fitting technique, explicit formulae for TMDI damping and tuning frequency for white-noise excitation are then derived. The proposed empirical expressions for TMDI parameters are found to have a negligible error, making them useful for the effective design of base-isolated structures. The effectiveness of TMDI and its optimum parameters are influenced by the soil condition and isolation frequency, according to the comparison made of the optimized parameters and response with different soil profiles. The effectiveness of an optimally designed TMDI in controlling the displacement and acceleration response of the flexible isolated structure under real and pulse-type earthquakes is also observed and found to be increased as the inertance mass ratio increases.

국내 지진 기록을 이용한 약진 지역에서의 인공지진파 발생에 관한 연구 (Generation of Artificial Earthquake Ground Motions for the Area with Low Seismicity)

  • 김승훈;이승창;한상환;이리형
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1998년도 가을 학술발표회 논문집
    • /
    • pp.497-504
    • /
    • 1998
  • In the nonlinear dynamic structural analysis, the given ground excitation as an input should be well defined. Because of the lack of recorded accelerograms in Korea, it is required to generate an artificial earthquake by a stochastic model of ground excitation with various dynamic properties rather than recorded accelerograms. It is well own that earthquake motions are generally non-stationary with time-varying intensity and frequency content. Many researchers have proposed non-stationary random process models. Yeh and Wen (1990) proposed a non-stationary stochastic process model which can be modeled as components with an intensity function, a frequency modulation function and a power spectral density function to describe such non-stationary characteristics. This model is based on the simulation for the strong-motion earthquakes with magnitude greater than approximately 5.0~6.0, because it will be not only expected to cause structural damage but also involved the characteristics of earthquake motions. Also, the recorded earthquake motion within this range are still very scarce in Korea. Thus, it is necessary to verify the model by the application of it to the mid-magnitude (approximately 4.0~6.0) earthquakes actually recorded in domestic or foreign area. The purpose of the paper is to generate an artificial earthquake using the model of Yeh and Wen in the area with low seismicity.

  • PDF

A high precision direct integration scheme for non-stationary random seismic responses of non-classically damped structures

  • Lin, Jiahao;Shen, Weiping;Williams, F.W.
    • Structural Engineering and Mechanics
    • /
    • 제3권3호
    • /
    • pp.215-228
    • /
    • 1995
  • For non-classically damped structures subjected to evolutionary random seismic excitations, the non-stationary random responses are computed by means of a high precision direct (HPD) integration scheme combined with the pseudo excitation method. Only real modes are used, so that the reduced equations of motion remain coupled for such non-classically damped structures. In the given examples, the efficiency of this method is compared with that of the Newmark method.

Pressure distribution and aerodynamic forces on stationary box bridge sections

  • Ricciardelli, Francesco;Hangan, Horia
    • Wind and Structures
    • /
    • 제4권5호
    • /
    • pp.399-412
    • /
    • 2001
  • Simultaneous pressure and force measurements have been conducted on a stationary box deck section model for two configurations (namely without and with New Jersey traffic barriers) at various angles of incidence. The mean and fluctuating aerodynamic coefficients and pressure coefficients were derived, together with their spectra and with the coherence functions between the pressures and the total aerodynamic forces. The mean aerodynamic coefficients derived from force measurements are first compared with those derived from the integration of the pressures on the deck surface. Correlation between forces and local pressures are determined in order to gain insight on the wind excitation mechanism. The influence of the angle of incidence on the pressure distribution and on the fluctuating forces is also analysed. It is evidenced how particular deck section areas are more responsible for the aerodynamic excitation of the deck.