• Title/Summary/Keyword: station keeping window

Search Result 2, Processing Time 0.017 seconds

Geostationary Satellite Station Keeping Robustness to Loss of Ground Control

  • Woo, Hyung Je;Buckwalter, Bjorn
    • Journal of Astronomy and Space Sciences
    • /
    • v.38 no.1
    • /
    • pp.65-82
    • /
    • 2021
  • For the vast majority of geostationary satellites currently in orbit, station keeping activities including orbit determination and maneuver planning and execution are ground-directed and dependent on the availability of ground-based satellite control personnel and facilities. However, a requirement linked to satellite autonomy and survivability in cases of interrupted ground support is often one of the stipulated provisions on the satellite platform design. It is especially important for a geostationary military-purposed satellite to remain within its designated orbital window, in order to provide reliable uninterrupted telecommunications services, in the absence of ground-based resources due to warfare or other disasters. In this paper we investigate factors affecting the robustness of a geostationary satellite's orbit in terms of the maximum duration the satellite's station keeping window can be maintained without ground intervention. By comparing simulations of orbit evolution, given different initial conditions and operations strategies, a variation of parameters study has been performed and we have analyzed which factors the duration is most sensitive to. This also provides valuable insights into which factors may be worth controlling by a military or civilian geostationary satellite operator. Our simulations show that the most beneficial factor for maximizing the time a satellite will remain in the station keeping window is the operational practice of pre-emptively loading East-West station keeping maneuvers for automatic execution on board the satellite should ground control capability be lost. The second most beneficial factor is using short station keeping maneuver cycle durations.

Station Keeping Maneuver Planning Using COMS Flight Dynamic Software

  • Kim, Hae-Yeon;Lee, Byoung-Sun;Hwang, Yoo-La;Shin, Dong-Suk;Kim, Jae-Hoon
    • Journal of Satellite, Information and Communications
    • /
    • v.2 no.2
    • /
    • pp.16-21
    • /
    • 2007
  • Various perturbations by the sun, the moon and the earth itself cause a continuous change in nominal position of a geostationary satellite. In order to maintain the satellite within a required window, north-south station keeping for controlling inclination and right ascension of ascending node, and east-west station keeping for controlling eccentricity and longitude are required. In this paper, station keeping maneuver simulation for Communication, Ocean and Meteorological Satellite (COMS) was performed using COMS Flight Dynamics Software(FDS) and the results were analyzed. COMS performs weekly based east-west/north-south station keeping to maintain satellite within ${\pm}0.05^{\circ}$ at the nominal longitude of $128.2^{\circ}E$. In addition, COMS performs wheel off-loading maneuver twice a day to eliminate attitude error caused by one-solar wing in the south panel of the satellite. In this paper, station keeping maneuver considering wheel off-loading maneuver was performed and the results showed that COMS can be maintained well within ${\pm}0.05^{\circ}$ window using COMS FDS.

  • PDF