• 제목/요약/키워드: static work

검색결과 746건 처리시간 0.024초

열처리조건에 따른 AZ61 마그네슘 합금의 미세조직과 감쇠능에 미치는 영향 (Effect of Annealing Conditions on Microstructure and Damping Capacity in AZ61 Magnesium Alloy)

  • 안재현;김권후
    • 열처리공학회지
    • /
    • 제31권2호
    • /
    • pp.56-62
    • /
    • 2018
  • Many researchers have studied on the precipitation control after solution treatment to improve the damping capacity without decreasing the strength. However, studies on the damping capacity and microstructure changes after deformation in the solid solution strengthening alloys were inadequate, such as the Al-Zn series magnesium alloys. Therefore, in order to investigate the effect of annealing condition on microstructure change and damping a capacity of AZ61 magnesium alloy. In this study, it was confirmed that the microstructure changes affect the damping capacity and hardness when annealed AZ61 alloy. AZ61 magnesium alloy was rolled at $400^{\circ}C$ with rolling reduction of 30%. These specimens were annealed at $350^{\circ}C$ to $450^{\circ}C$ for 30-180 minutes. After annealing, microstructure was observed by using optical microscopy, and damping capacity was measured by using internal friction measurement machine. Hardness was measured by Vickers hardness tester under a condition of 0.3 N. In this study, static recrystallization was observed regardless of the annealing conditions. In addition, uniform equiaxed grain structure was developed by annealing treatment. Hardness is decreased with increasing grain size. This is associated with Hall-Petch equation and static recrystallization. In case of damping capacity, bigger grain size show the larger damping capacity.

Deflection and bending characteristics of embedded functionally graded porous plate with bi-directional thickness variation subjected to bi-sinusoidal loading

  • Rajat Jain;Mohammad Sikandar Azam
    • Steel and Composite Structures
    • /
    • 제51권6호
    • /
    • pp.601-617
    • /
    • 2024
  • This work aims to explore the static behaviour of a tapered functionally graded porous plate (FGPP) with even and uneven porosity distributions resting on two parametric elastic foundations. The plate under investigation is subjected to bi-sinusoidal loading and the edges of the plate are exposed to different combinations of edge restrictions. In order to examin the static behaviour, bending factors (BF) related to bending and normal stresses have been evaluated using classical plate theory. To achieve this, the governing equations have been derived employing the energy concept. And to solve it, the Rayleigh-Ritz method with an algebraic function has been utilised; it is simple, precise, and computationally intensive. After convergence and validation analyses, new findings are made available. The BF of the plate have been exhaustively examined to explain the influence of aspect ratios, material property index, porosity factor, taper factor, and Winkler and Pasternak stiffness. It is observed that the BF of an elastically supported FGPP are influenced by the index of material propery and the aspect ratio. Findings also indicate that the impact of porosity is more when it is spread evenly, as opposed to when it is unevenly distributed. Further, the deformed plate's structure is significantly influenced by the different thickness variations. Examination of bending characteristics of FGPP having different new cases of thickness variations with different types of porosity distribution under fifteen different mixed edge constraints is the prime novality of this work. Results presented are reliable enough to be taken into account for future studies.

정적인 자세에서 목의 주관적 작업부하 평가 (A Study on Subjective Evaluation of Neck Workload in Static Work)

  • 김유창;정현욱
    • 산업공학
    • /
    • 제16권2호
    • /
    • pp.222-228
    • /
    • 2003
  • Computer-dominated jobs and industrial automation have rapidly created work-related musculoskeletal disorders(WMSDs) and WMSDs are also founded in employees of other general industries. WMSDs has been growing problems for Korean industries with higher incidence rate every year. The objective of this paper is to analyze the effects of the neck muscle workload according to postures(joint angle) and load weights. Seven male students participated in this study. Neck workload was rated on each person using a Borg's CR-10 scale. ANOVA showed that the CR-10 ratings were statistically significant according to postures and load weights. To reduce the large number and severity of WMSDs, which employees have been experiencing, we need to redesign the job in workplace so that we can control hazards that are reasonably likely to be causing or contributing to the WMSDs. The results of this study can be used to establish the safety criteria of joint angle and weight of neck workload.

축류송풍기의 삼차원 유동장 해석 (Three-dimensional analysis of the flow through an axial-flow fan)

  • 김광용;김정엽;정덕수
    • 대한기계학회논문집B
    • /
    • 제21권4호
    • /
    • pp.541-550
    • /
    • 1997
  • Computational and experimental investigations on the three-dimensional flowfield through an automotive cooling fan are carried out in this work. Steady, incompressible, three-dimensional, turbulent flow through a rotating axial-flow fan is analyzed with Reynolds averaged Navier-Stokes equations and standard k-.epsilon. turbulence model. The governing equations are discretized with finite-volume approximations in non-orthogonal curvilinear coordinates. Computational static pressures on the casing wall agree well with the experimental data which are measured in this work. And, they are sensitive to the change of tip clearance. The flowfield is not significantly affected by the thickness of the blade. The k-.omega. model gives the static pressure rise on the casing wall which is similar to that with the k-.epsilon. model.

Static analysis of singly and doubly curved panels on rectangular plan-form

  • Bahadur, Rajendra;Upadhyay, A.K.;Shukla, K.K.
    • Steel and Composite Structures
    • /
    • 제24권6호
    • /
    • pp.659-670
    • /
    • 2017
  • In the present work, an analytical solution for the static analysis of laminated composites, functionally graded and sandwich singly and doubly curved panels on the rectangular plan-form, subjected to uniformly distributed transverse loading is presented. Mathematical formulation is based on the higher order shear deformation theory and principle of virtual work is applied to derive the equations of equilibrium subjected to small deformation. A solution methodology based on the fast converging finite double Chebyshev series is used to solve the linear partial differential equations along with the simply supported boundary condition. The effect of span to thickness ratio, radius of curvature to span ratio, stacking sequence, power index are investigated. The accuracy of the solution is checked by the convergence study of non-dimensional central deflection and moments. Present results are compared with those available in the literature.

산화제펌프 스태틱 실 극저온 기밀시험 (Cryogenic leak test of LOX pump static seals)

  • 박민주;전성민;윤석환;김진한
    • 항공우주기술
    • /
    • 제8권1호
    • /
    • pp.73-81
    • /
    • 2009
  • 75톤급 터보펌프 개발을 위해 터보펌프 실 부위를 모사한 시험기를 제작하여 3종의 스태틱 실에 대한 상온 및 극저온 환경 기밀시험을 실시하였다. Conical 스태틱 실, PTFE 스태틱 실, C 스태틱 실을 적용한 기밀시험 결과 상온에서 기밀이 유지되더라도 산화제펌프의 이종 소재 사용에 따른 열수축률의 차이로 인해 PTFE 스태틱 실과 C 스태틱 실에서만 극저온 기밀이 유지되었고 Conical 스태틱 실에서는 극저온 기밀 유지에 실패하였다. 이는 기밀 면이 축방향인 PTFE 스태틱 실, C 스태틱 실과는 달리 Conical 스태틱 실의 기밀 면이 반경방향이므로 케이징의 반경방향 수축 시 기밀 면에 틈새가 생기기 때문인 것으로 파악된다. 더욱이 C 스태틱 실은 시험기 분해 후 재사용하여도 극저온 기밀이 유지되는 우수한 특성을 보였다.

  • PDF

응력파(應力波) 측정(測定)에 의(依)한 수종(數種)의 국산(國産) 침엽수재(針葉樹材) 및 열대(熱帶) 활엽수재(闊葉樹材)의 휨성질(性質) 평가(評價) (Evaluation of Static Bending Properties for Some Domestic Softwoods and Tropical Hardwoods Using Sonic Stress Wave Measurements)

  • 이도식;조재성;김규혁
    • Journal of the Korean Wood Science and Technology
    • /
    • 제25권1호
    • /
    • pp.8-14
    • /
    • 1997
  • Stress wave velocity, wave impedance, and stress wave elasticity of small, clear bending specimens of five domestic softwoods (Pinus densiflora, Pinus koraiensis, Chamaecyparis obtusa, Cryptomeria japonica, and Larix leptolepis) and four tropical hardwoods(Kempas, Malas, Taun, and Terminalia) were correlated with static bending modulus of elasticity(MOE) and modulus of rupture(MOR). The degree of correlation between stress wave parameters and static bending properties was dependent on wood species tested. Stress wave elasticity and wave impedance were better predictors for static bending properties than stress wave velocity for each species individually and for softwood or hardwood species taken as a group, even though elasticity and impedance were nearly equally correlated with static bending properties apparently. Based upon the correlation coefficient between stress wave parameters and static properties, stress wave elasticity and wave impedance were found as stress wave parameters which can be used for the purpose of the reliable and successful prediction of bending properties. The degree of correlation between static MOE and MOR was also different according to wood species tested. Static MOE was nearly as well correlated with MOR as was stress wave elasticity. The results of this research are encouraging and can be considered as a basis for further work using full-size lumber. From the results of this study, it was concluded that stress wave measurements could provide useful predictions of static bending properties and was a feasible method for machine stress grading of domestic softwoods and tropical hardwoods tested in this study.

  • PDF

정적인 자세에서 근전도를 이용한 목 근육의 작업부하 평가 (A Study on Evaluation of Neck Muscle Workload in Static Work Using EMG)

  • 김유창;정현욱;장성록
    • 한국안전학회지
    • /
    • 제20권4호
    • /
    • pp.148-153
    • /
    • 2005
  • Computer dominated jobs and industrial automation have rapidly created work-related musculoskeletal disorders(WMSDs) and WMSDS are expanding to employee of other general industry. Specific risk factors associated with WMSDs include repetitive motion, heavy lifting, forceful exertion, contact stress, vibration awkward posture and rapid hand and wrist movement. The purpose of this paper is to analyze the effects of the neck muscle workload according to posture(joint angle) and load weight. Seven male students participated in this study. To analyze neck muscle workload was studied on electromyographic(EMG) activity for sternocleidomastoid and trapezius, was subjectively rated using a Borg's CR-10 scale. ANOVA showed that the CR-10 ratings and most EMG root-mean-square (RMS) value were statistically significant improvement according to posture(joint angle) and load weight. The results of this study indicate the joint angle and weight of neck muscle workload to provide safe working conditions. To reduce the large number and severity of WMSDs employees have been experiencing, we need to redesign the job in workplace to identify and control hazards that are reasonably likely to be causing or contributing to the WMSDs.

Nonlinear formulation and free vibration of a large-sag extensible catenary riser

  • Punjarat, Ong-art;Chucheepsakul, Somchai
    • Ocean Systems Engineering
    • /
    • 제11권1호
    • /
    • pp.59-81
    • /
    • 2021
  • The nonlinear formulation using the principle of virtual work-energy for free vibration of a large-sag extensible catenary riser in two dimensions is presented in this paper. A support at one end is hinged and the other is a free-sliding roller in the horizontal direction. The catenary riser has a large-sag configuration in the static equilibrium state and is assumed to displace with large amplitude to the motion state. The total virtual work of the catenary riser system involves the virtual strain energy due to bending, the virtual strain energy due to axial deformation, the virtual work done by the effective weight, and the inertia forces. The nonlinear equations of motion for two-dimensional free vibration in the Cartesian coordinate system is developed based on the difference between the Euler's equations in the static state and the displaced state. The linear and nonlinear stiffness matrices of the catenary riser are obtained and the eigenvalue problem is solved using the Galerkin finite element procedure. The natural frequencies and mode shapes are obtained. The results are validated with regard to the reference research addressing the accuracy and efficiency of the proposed nonlinear formulation. The numerical results for free vibration and the effect of the nonlinear behavior for catenary riser are presented.

익스펜디드 금속을 내부 구조체로 가지는 ISB 판넬의 정적.동적 특성 분석 (Investigation into static and dynamic characteristics of ISB panels with the expanded metal as an internally structured material)

  • 안동규;이상훈;김민수;한길영;정창균;양동열
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.832-835
    • /
    • 2005
  • The objective of this research work is to investigate into static and dynamic characteristics of ISB panels with the expanded metal as an internally structured material. In order to investigate static and dynamic characteristics of ISB panels, several experiments, the tensile test, three-point bending test and impact test, are carried out. From the results of the experiments, the mechanical properties, bending stiffness and impact absorption energy of the ISB panel have been obtained. In addition, it has been shown that the static and dynamic characteristics of ISB panel are highly dependent on the crimping angle of the pyramidal structure for the expanded metal.

  • PDF