• Title/Summary/Keyword: static testing

Search Result 502, Processing Time 0.024 seconds

An Experimental Study for Construction of Static Aerodynamics Database of KF-16 based on Design of Experiments (KF-16의 DOE기반 정적 공력 데이터베이스 구축을 위한 실험적 연구)

  • Jin, Hyeon;Shim, Ho-Joon;Lee, Don-Goo;Ahn, Jae-Myung;Choi, Han-Lim;Oh, Se-Yoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.5
    • /
    • pp.422-431
    • /
    • 2015
  • Wind tunnel testing to construct static aerodynamic database of KF-16 was conducted for preceding research of design of experiments in wind tunnel testing. The test model is KF-16 scaled 1/33 and it has horizontal tail, flaperon, and rudder. The experiments consist of one experiment for analyzing aerodynamic coefficients under whether or not horizontal tail is present and four experiments for analyzing aerodynamic coefficients of changes of deflection angle in control surface which are flap, flaperon, rudder, and horizontal tail. After conducting wind tunnel testing, the experimental results show that the control surface changes have a great effect on Aerodynamic characteristics.

Building of Large Triaxial Testing Apparatus and Static Triaxial Testing for Railway Ballast (대형삼축압축시험장비 구축과 도상자갈의 정적압축시험 평가)

  • Lee, Sung-Jin;Kim, Yun-Ki;Lee, Il-Wha;Lee, Jun-S.;Park, Jae-Jun
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.1
    • /
    • pp.84-91
    • /
    • 2010
  • We built multi-purpose large triaxial testing system that can test and evaluate various geotechnical design parameters such as shear strength, deformation modulus and stress-strain behaviour for large diameter granular materials, which are the most commonly used construction materials in the railway, road embankments. The details of the built testing system and the results obtained from static triaxial test carried out for gneiss ballast material are discussed within the scope of this paper. Ballast is hardly saturated and is confined at low overburden pressure, since the depth is shallow and the permeability is very high. Herein we ascertained that the confining pressure can effectively be controlled by vacuum. The rational trend could be checked up through triaxial test results such as shear strength, deformation, and particle breakage. And the shear strength envelope could be non-linearly represented with the parent rock strength, confining pressure of the triaxial test and proper parameters.

Resilient Modulus Test of Subgrade Soils Using Standard Triaxial Test Equipment (표준 삼축압축 시험기를 이용한 노상토의 회복탄성계수 시험법)

  • Woo, Je Yoon;Cho, Chun Whan;Moon, Hong Deug;Kim, Dong Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.4
    • /
    • pp.239-250
    • /
    • 1993
  • The dynamic resilient modulus tests to determine the $M_R$ of the soils require expensive equipments and well trained personnels to obtain reliable test results. These problems inherent in the dynamic resilient modulus testing have been realized as major negative factors to hinder the $M_R$ test from being practically implemented as a routine test. In this regard. it is highly desirable to develop a simpler alternative testing method incorporating inexpensive equipments and easy-to-perform testing procedures. Developed in this study is an alternative $M_R$ test method based on statically repeated loading scheme utilizing the standard static triaxial test equipments. Applicability and limitations of the developed static $M_R$ testing method are investigated for typical subgrade soils in Korea.

  • PDF

The Effects of Knee Muscular Fatigue on One-Leg Static Standing Balance (슬관절 근육 피로가 한 발 정적기립 균형능력에 미치는 영향)

  • Kwon, Oh-Yun;Choi, Houng-Sik;Yu, Byong-Kyu
    • Journal of Korean Physical Therapy Science
    • /
    • v.4 no.2
    • /
    • pp.391-397
    • /
    • 1997
  • The purposes of this study were to determine wether knee muscular fatigue affects on one-leg static standing balance. Sixty four healthy subjects were used for this study : 44 men and 20 women, with an average age of 19.52. One leg static standing balance was measured at pre-fatigue and post-fatigue by an instrumented balance assessment system(kinesthetic ability training balance platform) which is commercially available for testing or training balance. Isokinetic exercises were used to evoke muscle fatigue at 180 degree/see by Cybex 1200. One leg static standing balance ability was significantly decreased after knee muscular fatigue. Although these phenomenons were not clearly understood, these results have important implications for rehabilitation in fatigable patients. These results suggest that the excessive fatiguing during rehabilitation in patients with fatigable disease may increase risk of reinjury and falling injury due to balance disturbance. Further studies are required to determine the physiological mechanisms of muscle fatigue that can play in decreasing one-leg static standing balance ability.

  • PDF

A Study of Static Pressure Differential Measurement of Nozzle for Miniaturization of a Air Flow Meter (풍량 측정 장치 소형화를 위한 노즐 정압차 측정 연구)

  • Oh, Sang-Teak;Kim, Young Il;Chung, Kwang-Seop
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.10
    • /
    • pp.414-419
    • /
    • 2016
  • Air flow measurement is a fundamental and important task for testing, adjusting, and balancing of HVAC system. However, it is difficult to carry out in the field due to the large size and weight of the flow meter. In this study, for the purpose of developing a small and portable flow meter, we proposed a different method of static pressure measurement and verified it experimentally. In the proposed method, static pressure difference was measured by inserting a tube inside the chamber before and after the nozzles. The results were compared with measurements according to the ANSI/ASHRAE standard. The results were in good agreement, indicating that the inserted tube method could be used for static pressure measurement of a portable flow meter. The proposed method eliminates the pressure tubes that are attached outside, which results in smaller size and easy handling.

Testing for Identification of Dynamic Properties of Viscoelastic Material Subject to Large Static Deformation (정적 대변형을 받고 있는 점탄성 재료의 동적 물성치 규명 시험)

  • 이완술;이호정;조지현;김진성;윤성기;김광준
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.2
    • /
    • pp.132-143
    • /
    • 2003
  • Viscoelastic components for vibration isolation or shock absorption in automobiles, machines and buildings are often subject to a high level of static deformation. From the dynamic design point of view, it is requisite to predict dynamic complex stiffness of viscoelastic components accurately and efficiently. To this end, a systematic procedure for complex modulus measurement of the viscoelastic material under large static deformation is often required in the industrial fields. In this paper, dynamic test conditions and procedures for the viscoelastic material under small oscillatory load superimposed on large static deformation are discussed. Various standard test methods are investigated in order to select an adequate test methodology. The influence of fixed boundary condition in the compression tests upon complex stiffness are investigated and an effective correction technique is proposed. Then the uniaxial tension and compression tests are performed and its results are compared with analysis results from conventional constitutive models.

Prediction of dynamic soil properties coupled with machine learning algorithms

  • Dae-Hong Min;Hyung-Koo Yoon
    • Geomechanics and Engineering
    • /
    • v.37 no.3
    • /
    • pp.253-262
    • /
    • 2024
  • Dynamic properties are pivotal in soil analysis, yet their experimental determination is hampered by complex methodologies and the need for costly equipment. This study aims to predict dynamic soil properties using static properties that are relatively easier to obtain, employing machine learning techniques. The static properties considered include soil cohesion, friction angle, water content, specific gravity, and compressional strength. In contrast, the dynamic properties of interest are the velocities of compressional and shear waves. Data for this study are sourced from 26 boreholes, as detailed in a geotechnical investigation report database, comprising a total of 130 data points. An importance analysis, grounded in the random forest algorithm, is conducted to evaluate the significance of each dynamic property. This analysis informs the prediction of dynamic properties, prioritizing those static properties identified as most influential. The efficacy of these predictions is quantified using the coefficient of determination, which indicated exceptionally high reliability, with values reaching 0.99 in both training and testing phases when all input properties are considered. The conventional method is used for predicting dynamic properties through Standard Penetration Test (SPT) and compared the outcomes with this technique. The error ratio has decreased by approximately 0.95, thereby validating its reliability. This research marks a significant advancement in the indirect estimation of the relationship between static and dynamic soil properties through the application of machine learning techniques.

Elastic modulus in large concrete structures by a sequential hypothesis testing procedure applied to impulse method data

  • Antonaci, Paola;Bocca, Pietro G.;Sellone, Fabrizio
    • Structural Engineering and Mechanics
    • /
    • v.26 no.5
    • /
    • pp.499-516
    • /
    • 2007
  • An experimental method denoted as Impulse Method is proposed as a cost-effective non-destructive technique for the on-site evaluation of concrete elastic modulus in existing structures: on the basis of Hertz's quasi-static theory of elastic impact and with the aid of a simple portable testing equipment, it makes it possible to collect series of local measurements of the elastic modulus in an easy way and in a very short time. A Hypothesis Testing procedure is developed in order to provide a statistical tool for processing the data collected by means of the Impulse Method and assessing the possible occurrence of significant variations in the elastic modulus without exceeding some prescribed error probabilities. It is based on a particular formulation of the renowned sequential probability ratio test and reveals to be optimal with respect to the error probabilities and the required number of observations, thus further improving the time-effectiveness of the Impulse Method. The results of an experimental investigation on different types of plain concrete prove the validity of the Impulse Method in estimating the unknown value of the elastic modulus and attest the effectiveness of the proposed Hypothesis Testing procedure in identifying significant variations in the elastic modulus.

Study on seismic behavior and seismic design methods in transverse direction of shield tunnels

  • He, Chuan;Koizumi, Atsushi
    • Structural Engineering and Mechanics
    • /
    • v.11 no.6
    • /
    • pp.651-662
    • /
    • 2001
  • In order to investigate the seismic behavior and seismic design methods in the transverse direction of a shield tunnel, a series of model shaking table tests and a two-dimensional finite element dynamic analysis on the tests are carried out. Two kinds of static analytical methods based on ground-tunnel composite finite element model and beam-spring element model are proposed, and the validity of the static analyses is verified by model shaking table tests. The investigation concerns the dynamic response behavior of a tunnel and the ground, the interaction between the tunnel and ground, and an evaluation of different seismic design methods. Results of the investigation indicate that the shield tunnel follows the surrounding ground in displacement and dynamic characteristics in the transverse direction; also, the static analytical methods proposed by the authors can be used directly as the seismic design methods in the transverse direction of a shield tunnel.

Enhancement and Evaluation of Fatigue Resistance for Spine Fixation System (척추고정장치의 피로성능 평가와 향상)

  • Kim, Hyun-Mook;Kim, Sung-Kon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.8
    • /
    • pp.142-147
    • /
    • 2009
  • Spinal fixation systems provide surgical versatility, but the complexity of their design reduces their strength and fatigue resistance. There is no published data on the mechanical properties of such screws. Screws were assembled according to a vertebrectomy model for destructive mechanical testing. A group of two assemblies was tested in static compression. One group was applied to surface a grit blasting method and another group was applied to surface a bead blasting method. Modes of failure, yield, and ultimate strength, yield stiffness, and cycles to failure were determined for six assembles. Static compression 2% offset yield load ranges was from 327 to 419N. Fatigue loads were determined two levels, 37.5% and 50% of the average load from static compression ultimate load. An assembly of bead blasting treatment only achieved 5 million cycles at 37.5% level in compression bending.