• 제목/요약/키워드: static structural analysis

검색결과 1,486건 처리시간 0.027초

충돌성능을 고려한 승용차 범퍼빔 단면의 최적화 (Optimization of Bumper Beam Section of Crashworthiness)

  • 강성종
    • 한국자동차공학회논문집
    • /
    • 제6권6호
    • /
    • pp.276-284
    • /
    • 1998
  • Optimum design of bumper beam is investigated using nonlinear CAE structural analysis techniques.In order to minimize its weight, while enhancing structural performances, bumper beam structural analyses were carried out to produce optimum section. Model is composed of bumper beam and stay. First, considering FMVSS safety standard, static strength and energy absorbing capability were estimated for several competitive bumpers through pendulum static analysis, and most promising section was chosen. Next, to ensure dynamic crashworthinesss performance for center pole impact was evaluated for the bumper beam with chosen section through pendulum static analysis, referring to DHS bumper dynamic impact standard. Finally, 2.5 mph bumper beam was designed and its structural performance was estimated. Through this investigation, an optimized bumper beam section with less weight of 20% while maintaining almost equal carshworthiness, compared with a conventional bumper beam section which proved its impact crashworthiness by experiments, was developed.

  • PDF

강성계수의 전달을 이용한 골조구조물의 정적해석 (Static Analysis of Frame Structures Using Transfer of Stiffness Coefficient)

  • 최명수;문덕홍;정하용
    • 한국전산구조공학회논문집
    • /
    • 제16권1호
    • /
    • pp.9-18
    • /
    • 2003
  • 파양한 구조물의 정적해석에서 매트릭스구조해석법은 가상 폭넓게 사용되고 있는 강력한 해석기법이다. 그러나 이 방법으로 많은 수의 자유도를 갖는 구조물을 정확히 해석하기 위해서는 많은 계산 메모리와 빠른 처리 능력을 갖춘 고성능 컴퓨터를 필요로하는 취약점이 있다. 따라서 매트릭스구조해석법으로 많은 수의 자유노를 갖는 구조물을 퍼스널 컴퓨터 상에서 정확히 해석하기에는 곤란한 경우가 많다. 매트릭스구조해석법치 이러한 취약점을 극복하기 위하여, 저자들은 전달강성계수법을 제안한다. 전달강성계수법은 해석대상 구조물에 대한 강성계수의 전달에 기본 개념을 두고 있으am로 퍼스널 컴퓨터에 매우 적합한 해석기법이다. 본 논문에서는 골조추조물에 대한 정적해석 알고리듬을 전달강성계수법으로 정식화한다. 그리고 전달강성계수법, NASTRAN, 매트릭스구조해석법 그리고 해석해에 의한 계산 결과들의 비교를 통해 전달강성계수법의 유효성을 확인한다.

DEVELOPMENT OF AN IMPROVED THREE-DIMENSIONAL STATIC AND DYNAMIC STRUCTURAL ANALYSIS BASED ON FETI-LOCAL METHOD WITH PENALTY TERM

  • KIM, SEIL;JOO, HYUNSHIG;CHO, HAESEONG;SHIN, SANGJOON
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제21권3호
    • /
    • pp.125-142
    • /
    • 2017
  • In this paper, development of the three-dimensional structural analysis is performed by applying FETI-local method. In the FETI-local method, the penalty term is added as a preconditioner. The OPT-DKT shell element is used in the present structural analysis. Newmark-${\beta}$ method is employed to conduct the dynamic analysis. The three-dimensional FETI-local static structural analysis is conducted. The contour and the displacement of the results are compared following the different number of sub-domains. The computational time and memory usage are compared with respect to the number of CPUs used. The three-dimensional dynamic structural analysis is conducted while applying FETI-local method. The present results show appropriate scalability in terms of the computational time and memory usage. It is expected to improve the computational efficiency by combining the advantages of the original FETI method, i.e., FETI-mixed using the mixed local-global Lagrange multiplier.

B축 회전 기능을 갖춘 복합공구대 구조물의 정/동적 안정성에 관한 연구 (A Study on the Static/Dynamic Stability for the Structure of a Mill Turret with a B-Axis Tilting Facility)

  • 강승희;김재실
    • 한국기계가공학회지
    • /
    • 제13권1호
    • /
    • pp.39-44
    • /
    • 2014
  • Techniques of tool posts are developing such that variable machining is possible using only one machine for the complication of a product's shape and to reduce the machining time. In order to develop a mill turret with a variable machining function with the mounting of mill turret units on a B-axis tilting table, we determine the static/dynamic stability of the structure of the mill turret. To this end, a static structural analysis and a modal analysis were conducted. From the results of the static structural analysis, the maximum stress was found to be less than the allowable stress. By the comparing the results of the modal analysis of the excitation frequencies of the mill turret, there were no resonance regions found. Therefore, the mill turret with the B-axis tilting facility is shown to have good structural integrity.

The construction of second generation wavelet-based multivariable finite elements for multiscale analysis of beam problems

  • Wang, Youming;Wu, Qing;Wang, Wenqing
    • Structural Engineering and Mechanics
    • /
    • 제50권5호
    • /
    • pp.679-695
    • /
    • 2014
  • A design method of second generation wavelet (SGW)-based multivariable finite elements is proposed for static and vibration beam analysis. An important property of SGWs is that they can be custom designed by selecting appropriate lifting coefficients depending on the application. The SGW-based multivariable finite element equations of static and vibration analysis of beam problems with two and three kinds of variables are derived based on the generalized variational principles. Compared to classical finite element method (FEM), the second generation wavelet-based multivariable finite element method (SGW-MFEM) combines the advantages of high approximation performance of the SGW method and independent solution of field functions of the MFEM. A multiscale algorithm for SGW-MFEM is presented to solve structural engineering problems. Numerical examples demonstrate the proposed method is a flexible and accurate method in static and vibration beam analysis.

Nonlinear Aeroelastic Analysis of a High-Aspect-Ratio Wing with Large Deflection Effects

  • Kim, Kyung-Seok;Lim, In-Gyu;Lee , In;Yoo, Jae-Han
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제7권1호
    • /
    • pp.99-105
    • /
    • 2006
  • In this study, nonlinear static and dynamic aeroelastic analyses for a high-aspect-ratio wing have been performed. To achieve these aims, the transonic small disturbance (TSD) theory for the aerodynamic analysis and the large deflection beam theory considering a geometrical nonlinearity for the structural analysis are applied, respectively. For the coupling between fluid and structure, the transformation of a displacement from the structural mesh to the aerodynamic grid is performed by a shape function which is used for the finite element and the inverse transformation of force by work equivalent load method. To validate the current method, the present analysis results of a high-aspect-ratio wing are compared with the experimental results. Static deformations in the vertical and torsional directions caused by an angle of attack and gravity loading are compared with experimental results. Also, static and dynamic aeroelastic characteristics are investigated. The comparisons of the flutter speed and frequency between a linear and nonlinear analysis are presented.

동하중을 받는 구조물의 등가정하중 기반 구조최적화 연구 (Structural Optimization based on Equivalent Static Load for Structure under Dynamic Load)

  • 김현기;김의영;조맹효
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2013년도 추계학술대회 논문집
    • /
    • pp.236-240
    • /
    • 2013
  • Due to difficulty of considering dynamic load in side of a computer resource and computing time, it is common that external load is assumed as ideal static load. However, structural analysis under static load cannot guarantee the safety of structural design. Recently, the systematic method to construct equivalent static load from the given dynamic load has been proposed. Previous study has calculated equivalent static load through the optimization procedure under displacement constraints. And previously reported works to distribute equivalent static load were based on ad hoc methods. However, it is appropriate to take into account the stress constraint for the safety design. Moreover, the improper selection of loading position may results in unreliable structural design. The present study proposes the methodology to optimize an equivalent static which distributed on the primary DOFs, DOFs of the constraint elements, DOF of an external load as positions. In conclusion, the reliability of proposed method is demonstrated through a global optimization.

  • PDF

도로포장 구조해석을 위한 점탄성 유한요소 해석코드 개발 (Development of Viscoelastic Finite Element Analysis Code for Pavement Structures)

  • 이창준;유평준;최지영;엄병식
    • 한국도로학회논문집
    • /
    • 제14권5호
    • /
    • pp.1-9
    • /
    • 2012
  • PURPOSES: A viscoelastic axisymmetric finite element analysis code has been developed for stress analysis of asphalt pavement structures. METHODS: Generalized Maxwell Model (GMM) and 4-node isoparametric element were employed for finite element formulation. The code was developed using $C^{+}^{+}$ computer program language and named as KICTPAVE. For the verification of the developed code, a structural model of a pavement system was constructed. The structural model was composed of three layers: asphalt layer, crushed stone layer, and soil subgrade. Two types of analysis were considered for the verification: (1)elastic static analysis, (2)viscoelastic time-dependent analysis. For the elastic static analysis, linear elastic material model was assigned to all the layers, and a static load was applied to the structural model. For the viscoelastic time-dependent analysis, GMM and linear elastic material model were assigned to the asphalt layer and all the other layers respectively, and a cyclic loading condition was applied to the structural model. RESULTS: The stresses and deformations from KICTPAVE were compared with those from ABAQUS. The analysis results obtained from the two codes showed good agreement in time-dependent response of the element under the loading area as well as the surface deformation of asphalt layer, and horizontal and vertical stresses along the axisymmetric axis. CONCLUSIONS: The validity of KICTPAVE was confirmed by showing the agreement of the analysis results from the two codes.

선형 등가정하중을 이용한 비선형 거동 구조물의 최적설계 (I) - 알고리듬 - (Structural Optimization for Non-Linear Behavior Using Equivalent Static Loads (I))

  • 박기종;박경진
    • 대한기계학회논문집A
    • /
    • 제29권8호
    • /
    • pp.1051-1060
    • /
    • 2005
  • Nonlinear Response Optimization using Equivalent Static Loads (NROESL) method/algorithm is proposed to perform optimization of non-linear response structures. The conventional method spends most of the total design time on nonlinear analysis. The NROESL algorithm makes the equivalent static load cases for each response and repeatedly performs linear response optimization and uses them as multiple loading conditions. The equivalent static loads are defined as the loads in the linear analysis, which generates the same response field as those in non-linear analysis. The algorithm is validated for the convergence and the optimality. The proposed algorithm is applied to a simple mathematical problem to verify the convergence and the optimality.

Structural damage identification using incomplete static displacement measurement

  • Lu, Z.R.;Zhu, J.J.;Ou, Y.J.
    • Structural Engineering and Mechanics
    • /
    • 제63권2호
    • /
    • pp.251-257
    • /
    • 2017
  • A local damage identification method using measured structural static displacement is proposed in this study. Based on the residual force vector deduced from the static equilibrium equation, residual strain energy (RSE) is introduced, which can localize the damage in the element level. In the case of all the nodal displacements are used, the RSE can localize the true location of damage, while incomplete displacement measurements are used, some suspicious damaged elements can be found. A model updating method based on static displacement response sensitivity analysis is further utilized for accurate identification of damage location and extent. The proposed method is verified by two numerical examples. The results indicate that the proposed method is efficient for damage identification. The advantage of the proposed method is that only limited static displacement measurements are needed in the identification, thus it is easy for engineering application.