• Title/Summary/Keyword: static structural analysis

Search Result 1,507, Processing Time 0.043 seconds

The structure Optimization Research of the Automation Welding Equipment of the Large L-type Using the Response Surface Method (반응표면법을 이용한 대형 L-type 자동화용접장치의 구조최적화 연구)

  • Jang, Junho;Jung, Wonjee;Lee, Dongsun;Jung, Jangsik;Jung, Sung Ho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.1
    • /
    • pp.138-144
    • /
    • 2013
  • The automation technology for overlay welding is needed due to the occurrence of severe corrosion and abrasion on the surface of internal contact in different shape of fittings. In Korea, different shapes of fittings have been manufactured by using the imported equipment of overlay welding automation at some companies. Thus the research on the development of overlay welding automation system (in short, OWAS) for a large L-type tube is urgently needed. In this paper, the investigation is focused on the optimal design of a supporting base for the (currently developing) OWAS of large L-type tube. Specifically we assume that the base which supports the equipment during the process of overlay welding is loaded as self-weight in the direction of gravity through static analysis especially when it is rotated 180 degree on the OWAS. For optimal design of a supporting base for OWAS of large L-type tube, Solidworks(R) (for 3-dimensional modelling) and ANASYS Workbench(R) (for structural analysis) are incorporated so as to proceed an optimization routines based on Response Surface Method (RSM) and Design of Experiment (DOE). In more specific, DOE finds out major factors (or dimensions) of the supporting base by using MINITAB(R). Then the regression equations between design variables (the major factors of supporting base) and response variables (deformation, stress and safety factor for the supporting base), which will be resulted in by RSM, verify the major factors of DOE. In the next step, Central Composite Design (CCD) plans 20 simulations of ANASYS Workbench(R) and then figures out the optimal values of design variables which will be reflected on the manufacturing of supporting base. Finally welding experiment is conducted to figure out the influence of overlay welding quality in applying the optimized design values of supporting base to the actual OWAS.

Reliability Analysis Offshore Wind Turbine Support Structure Under Extreme Ocean Environmental Loads (극한 해양 환경하중을 고려한 해상풍력터빈 지지구조물의 신뢰성 해석)

  • Lee, Sang Geun;Kim, Dong Hyawn
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.1
    • /
    • pp.33-40
    • /
    • 2014
  • Reliability analysis of jacket type offshore wind turbine (OWT) support structure under extreme ocean environmental loads was performed. Limit state function (LSF) of OWF support structure is defined by using structural dynamic response at mud-line. Then, the dynamic response is expressed as the static response multiplied by dynamic response factor (DRF). Probabilistic distribution of DRF is found from response time history under design significant wave load. Band limited beta distribution is used for internal friction angle of ground soil. Wind load is obtained in the form of thrust force from commercial code called GH_Bladed and then, applied to tower hub as random load. In a numerical example, the response surface method (RSM) is used to express LSF of jacket type support structure for 5MW OWF. Reliability index is found using first order reliability method (FORM).

Bending analysis of functionally graded thick plates with in-plane stiffness variation

  • Mazari, Ali;Attia, Amina;Sekkal, Mohamed;Kaci, Abdelhakim;Tounsi, Abdelouahed;Bousahla, Abdelmoumen Anis;Mahmoud, S.R.
    • Structural Engineering and Mechanics
    • /
    • v.68 no.4
    • /
    • pp.409-421
    • /
    • 2018
  • In the present paper, functionally graded (FG) materials are presented to investigate the bending analysis of simply supported plates. It is assumed that the material properties of the plate vary through their length according to the power-law form. The displacement field of the present model is selected based on quasi-3D hyperbolic shear deformation theory. By splitting the deflection into bending, shear and stretching parts, the number of unknowns and equations of motion of the present formulation is reduced and hence makes them simple to use. Governing equations are derived from the principle of virtual displacements. Numerical results for deflections and stresses of powerly graded plates under simply supported boundary conditions are presented. The accuracy of the present formulation is demonstrated by comparing the computed results with those available in the literature. As conclusion, this theory is as accurate as other shear deformation theories and so it becomes more attractive due to smaller number of unknowns. Some numerical results are provided to examine the effects of the material gradation, shear deformation on the static behavior of FG plates with variation of material stiffness through their length.

The Effects of City Brand Image on City Brand Recognition and City Loyalty (도시 브랜드 이미지가 도시 브랜드 인지도와 도시 충성도에 미치는 영향)

  • Kim, Do-Heon
    • The Journal of Industrial Distribution & Business
    • /
    • v.9 no.3
    • /
    • pp.69-79
    • /
    • 2018
  • Purpose - Competition among cities around the world are rapidly shifting from competition of production factors such as labor costs and quality of raw materials to competition between the consumption factors such as quality of life, settlement environment, culture, and place. The entry into the era of competition between consumption factors is not only attracting investment for strengthening city competitiveness, but also actively inducing urban image reconstruction and new image making. Therefore, various studies related to urban marketing are being carried out. The object of this study is to investigate the effect of city brand image on city brand recognition and city loyalty based on the questionnaire of external citizens about Changwon city. Research design, data, and methodology - The data were collected from 200 Seoul and Busan citizens. Reliability and exploratory factor analysis were conducted through the SPSS program, and confirmatory factor analysis and structural equation modeling were conducted by using the AMOS program. Results - As a result of the hypothesis test, six hypotheses were adopted among the nine hypotheses. In summary, pleasant image, dynamic image, and good administrative image have a significant positive impact on city brand recognition. The magnanimous image did not have a significant effect on city brand recognition. In the impact of city brand image on city loyalty, magnanimous image and good administrative image had significant positive impact on city loyalty. Pleasant images and dynamic images did not significantly affect city loyalty. In addition, city brand recognition positively influenced city loyalty. Conclusions - First, it is possible to say that there is an academic significance of this research in its contribution to regional revitalization by investigating mutual influences in urban aspect by combining place marketing with image, recognition, and loyalty. Secondly, kinetic images such as pleasant image and dynamic image have more influence on recognition, and static images such as magnanimous images have more influence on loyalty. So, further research will be necessary to establish theories. Finally, In order to increase city brand recognition and city loyalty to local city, efforts should be made to improve urban images such as pleasant image, magnanimous image, dynamic image, and good administrative image.

A Study on the Fatigue Crack Evaluation Method of Railway Bogie Frame (철도차량 대차를 피로균열 평가법 연구)

  • Jun, Hyun-Kyu;Seo, Jung-Won;Lee, Dong-Hyong;Kim, Hyeong-Jin
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.1
    • /
    • pp.16-24
    • /
    • 2009
  • In this study, fatigue crack growth rate of a cracked railway bogie frame under variable amplitude loading is predicted by applying linear elastic fracture mechanics. For this purpose, we find the critical points by reference surveying on cracked railway bogie frames. And we make an effective load history by synthesizing the dynamic load measured from the critical points of railway bogie frame during commercial line operation and the static load calculated from structural analysis. Crack growth analyses are performed at the 3 critical points under the commercial operation loading condition by assuming an initial crack size as 40 mm. and the results are compared with the experimental results from Japanese railway bogie frame crack growth case. From the analysis results, we find that around 500,000 km operating distance is necessary to bring crack growth from the initial crack to unstable crack. And it takes around 3.8 normal operating years. We conclude that it is enough time to detect the crack between normal maintenance period.

Modal Testing of Arches for Plastic Film-Covered Greenhouses (비닐하우스 아치구조의 모달실험)

  • Cho, Soon-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.2
    • /
    • pp.57-65
    • /
    • 2010
  • To determine the static buckling loads and evaluate the structural performance of slender steel pipe-arches such as for greenhouse structures, a series of modal tests using a fixed hammer and roving sensors was carried out, by providing no load, then a range of vertical loads, on an arch rib in several steps. More attention was given to an internal arch where vertical and horizontal auxiliary members are not placed, unlike an end arch. Modal parameters such as natural frequencies, mode shapes and damping ratios were extracted using more advanced system identification methods such as PolyMAX (Polyreference Least-Squares Complex Frequency Domain), and compared with those predicted by commercial FEA (Finite Element Analysis) software ANSYS for various conditions. A good correlation between them was achieved in an overall sense, however the reduction of natural frequencies due to the existence of preaxial loads was not apparent when the vertical load level was about up to 38% of its resistance. Some difficulties related to the field testing and parameter extraction for a very slender arch, as might arise from the influences of neighboring members, are carefully discussed.

Numerical investigation seismic performance of rigid skewed beam-to-column connection with reduced beam section

  • Zareia, Ali;Vaghefi, Mohammad;Fiouz, Ali R.
    • Structural Engineering and Mechanics
    • /
    • v.57 no.3
    • /
    • pp.507-528
    • /
    • 2016
  • Reduced beam section (RBS) moment resisting connections are among the most economical and practical rigid steel connections developed in the aftermath of the 1994 Northridge and the 1995 Kobe earthquakes. Although the performance of RBS connection has been widely studied, this connection has not been subject to in the skewed conditions. In this study, the seismic performance of dogbone connection was investigated at different angles. The Commercial ABAQUS software was used to simulate the samples. The numerical results are first compared with experimental results to verify the accuracy. Nonlinear static analysis with von Mises yield criterion materials and the finite elements method were used to analyze the behavior of the samples The selected Hardening Strain of materials at cyclic loading and monotonic loading were kinematics and isotropic respectively The results show that in addition to reverse twisting of columns, change in beam angle relative to the central axis of the column has little impact on hysteresis response of samples. Any increase in the angle, leads to increased non-elastic resistance. As for Weak panel zone, with increase of the angle between the beam and the column, the initial submission will take place at a later time and at a larger rotation angle in the panel zone and this represents reduced amount of perpendicular force exerted on the column flange. In balanced and strong panel zones, with increase in the angle between the beam and the central axis of the column, the reduced beam section (RBS), reaches the failure limit faster and at a lower rotation angle. In connection of skewed beam, balanced panel zone, due to its good performance in disposition of plasticity process away from connection points and high energy absorption, is the best choice for panel zone. The ratio of maximum moment developed on the column was found to be within 0.84 to 1 plastic anchor point, which shows prevention of brittle fracture in connections.

Strength Evaluation of a Doubler Plate of Ship Structure subjected to the Biaxial In-plane Compression (양축방향 면내 압축하중을 받는 선박 이중판의 강도 평가)

  • Juh-Hyeok Ham
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.38 no.1
    • /
    • pp.72-85
    • /
    • 2001
  • A study for the structural strength evaluation on the doubler plate subjected to the biaxial in-plane compression has been performed through the systematic evaluation process. In order to estimate the proper static strength of doubler plate, elasto-plastic large deflection analysis is introduced including the contact effect between main plate and doubler. The characteristics of stiffness and strength variation are discussed based on their results. A1so, in order to compare the doubler structure with the original strength of main plate without doubler, a simple formula for the evaluation of the equivalent flat plate thickness is derived based on the additional series analysis of flat plate structure. Using this derived equation, the thickness change of a equivalent flat plate is analyzed according to the variation of various design parameters of doubler plate and some design guides are suggested in order to maintain the original strength of main plate without doubler reinforcement. Finally, correlation between derived equivalent flat plate formula and the developed buckling strength formulas by author et a1. is discovered and these relations are formulated for the future development of simple strength evaluation formula of doubler plate structure.

  • PDF

Studies on two bay and three storey infilled frame with different interface materials: Experimental and finite element studies

  • Muthukumar, S.;Satyanarayanan, K.S.;Senthil, K.
    • Structural Engineering and Mechanics
    • /
    • v.64 no.5
    • /
    • pp.543-555
    • /
    • 2017
  • The non-linear behaviour of integral infilled frames (in which the infill and the frame are bonded together with help of various interface materials) is studied both experimentally and numerically. The experiments were carried out on one-sixth scale two-bay and three-storey reinforced concrete frames with and without infill against static cyclic loading. Three interface materials - cement mortar, cork and foam have been used in between the infill and the frame. The infill, interface and the frame are bonded together is called integral frame. The linear and non-linear behaviors of two dimensional bare frame and integral infilled frame have been studied numerically using the commercial finite element software SAP 2000. Linear finite element analysis has been carried out to quantify the effect of various interface materials on the infilled frames with various combinations of 21 cases and the results compared. The modified configuration that used all three interface materials offered better resistance above others. Therefore, the experiments were limited to this modified infilled frame case configuration, in addition to conventional (A1-integral infilled frame with cement mortar as interface) and bare frame (A0-No infill). The results have been compared with the numerical results done initially. It is found that stiffness of bare frame increased by infilling and the strength of modified frame increased by 20% compare to bare frame. The ductility ratio of modified infilled frame was 42% more than that of the conventional infilled frame. In general, the numerical result was found to be in good agreement with experimental results for initial crack load, ultimate load and deformed pattern of infill.

Optimal Design of Wind Turbine Tower Model Using Reliability-Based Design Optimization (신뢰성 기반 최적설계를 이용한 풍력 발전기 타워 최적 설계)

  • Park, Yong-Hui;Park, Hyun-Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.5
    • /
    • pp.575-584
    • /
    • 2014
  • In this study, the NREL 5 MW wind turbine tower model was optimized according to the multi-body dynamics and reliability-based design. The mathematical model was defined as a link-joint system including dynamic characteristics derived from Timoshenko's beam theory. For the optimization problem, the sensitivities to variations in the tower thicknesses and inner and outer diameters were acquired and arranged in terms of safety and efficiency according to bending stress and buckling standards. An optimal design was calculated with the advanced first-order second moment method and used to define a finite element model for validation. The finite element model was simulated by static analysis. The relationship between the multi-body dynamic and finite element method throughout the process was investigated, and the optimal model, which had high endurance despite its low mass, was determined.