• Title/Summary/Keyword: static structural analysis

Search Result 1,507, Processing Time 0.035 seconds

Effect of Constitutive Material Models on Seismic Response of Two-Story Reinforced Concrete Frame

  • Alam, Md. Iftekharul;Kim, Doo-Kie
    • International Journal of Concrete Structures and Materials
    • /
    • v.6 no.2
    • /
    • pp.101-110
    • /
    • 2012
  • This paper focuses on the finite element (FE) response sensitivity and reliability analyses considering smooth constitutive material models. A reinforced concrete frame is modeled for FE sensitivity analysis followed by direct differentiation method under both static and dynamic load cases. Later, the reliability analysis is performed to predict the seismic behavior of the frame. Displacement sensitivity discontinuities are observed along the pseudo-time axis using non-smooth concrete and reinforcing steel model under quasi-static loading. However, the smooth materials show continuity in response sensitivity at elastic to plastic transition points. The normalized sensitivity results are also used to measure the relative importance of the material parameters on the structural responses. In FE reliability analysis, the influence of smoothness behavior of reinforcing steel is carefully noticed. More efficient and reasonable reliability estimation can be achieved by using smooth material model compare with bilinear material constitutive model.

Optimization of the Television Packing System Using Equivalent Static Loads (등가정하중법을 이용한 텔레비전 포장재의 구조최적설계)

  • Lee, Youngmyung;Jung, Ui-Jin;Park, Gyung-Jin;Han, In-Sik;Kim, Tai-Kyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.3
    • /
    • pp.311-318
    • /
    • 2015
  • A nonlinear dynamic response structural optimization process is proposed for the television (TV) packing system that protects the damage from a drop situation using the equivalent static loads (ESLs). Topology optimization using ESLs is carried out for conceptual design, and shape optimization using stress ESLs for a virtual model is performed for detailed design. Stress ESLs are static loads that generate the same displacement as well as the stress fields of linear static analysis as those of nonlinear dynamic analysis. Thus, the response of nonlinear dynamic analysis can be utilized as a constraint in the linear static structural optimization. An actual example is solved to validate the process. The drop test of a television packaging system is analyzed by LS-DYNA, and NASTRAN is used for optimization.

Structural Deflection Analysis of Robot Manipulator for Removing Nuclear Fuel Rod in Nuclear Reactor Vessel (원자로내 핵연료봉 제거 로봇 구조물의 휨변형구조해석)

  • 권영주;김재희
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.04a
    • /
    • pp.203-209
    • /
    • 1999
  • In this study, the structural deflection analysis of robot manipulator for removing nuclear fuel rod from nuclear reactor vessel is performed by using general purpose finite element code (ANSYS). The structural deflection analysis results reported in this study is very required for the accurate design of robot system. The structural deflection analysis for the manipulator's structural status at which the gripper grasps and draws up the nuclear fuel rod is done, For this beginning structural status of robot manipulator's removing motion, the reaction forces at each joint have static maximum values as reported in the reference(6), and so these forces may cause the maximum deflection of robot structure. The structural deflection analysis is performed for selected four working cases of the proposed structural model and results on deformation, stress for the manipulator's solid body and the deflection at the end of robot manipulator's gripper are calculated. And further, the same analysis is performed for the slenderer manipulator with cross section reduced by one-fifth of each side length of proposed model. The analysis is performed not only for the nuclear fuel rod with weight load of 300kg but also for nuclear fuel rods with weight loads of 100kg, 200kg, 400kg and 500kg. The static structural deflection analysis results show that the deflection value increases as the load increases and the largest value (corresponding to the weight load of 500kg in case 1) is much smaller than the gap distance between nuclear fuel rods. but the largest value for the slenderer manipulator is almost as large as the gap distance, Hence, conclusively, the proposed manipulator's structural model is acceptably safe for mechanical design of robot system.

  • PDF

An Evaluation of Progressive Collapse Resisting Capacity of RC Structure Using Static and Dynamic Analysis (정적 및 동적 해석을 이용한 철근콘크리트 건물의 연쇄붕괴 저항성능 평가)

  • Seo, Dae-Won;Kim, Hae-Jin;Shin, Sung-Woo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.6
    • /
    • pp.238-245
    • /
    • 2010
  • Progressive collapse is defined as a collapse caused by sectional destruction of a structural member which links to other surrounding structures. Currently the design guidelines for the prevention of progressive collapse is not available in Korea. So, structural engineers have a difficulty in evaluating progressive collapse. In this study, the static and dynamic analysis to evaluate the methods and procedures are conducted using commercial analysis program for RC moment resisting frames. According to the study, DCR value of RC moment resisting frame system based on code in Korea is over 2 and it shows that it can't provide alternate load paths due to the progressive collapse. And additional reinforcement should be considered for the progressive collapse resistance. As a result of vertical deflection and DCR value of linear static analysis and linear dynamic analysis, the results of dynamic analysis were underestimated more than the result of static analysis. Thus, the dynamic coefficient value of 2 provides conservative estimation.

Simplified Dynamic Analysis of High-Rise Buildings (고층건물의 단순화된 동적해석)

  • 이동근;황재호
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1993.04a
    • /
    • pp.101-108
    • /
    • 1993
  • A simplified dynamic analysis method for high-rise building structures is proposed in this study. In the proposed method, member forces are obtained through static analysis using story forces derived from story shear forces which are obtained using dynamic analysis procedure. Major advantage of the proposed method is in the convenience in load combinations for design analysis.

  • PDF

Design and static structural analysis of KSLV-I upper stage cowls (KSLV-I 상단부 카울 설계 및 구조 해석)

  • An, Jae-Mo;Kim, Kwang-Soo;Jang, Young-Soon
    • Aerospace Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.111-118
    • /
    • 2007
  • KSLV-I which is being developed in KARI is composed with two stages, and adaptor ring is used for coupling stage. Cables for interconnecting between stage is exposed on the outside. Also 8 pyro bolts which are installed in adaptor ring are used for separation of stage. In general, cowl is used for protecting exposed parts or structure which are anxious about damage from outer environment. In KSLV-I, two kind of cowls are designed. The one is umbilical cowl, and the other is pyro bolt cowl. Because cowl is exposed on the outside, heat and pressure load developed from air have effect on cowls. Therefore verification of structural strength through static analysis is required. In this study, static analysis in load condition except heat load is accomplished. In result of analysis, structural strength of pyro bolt cowl is verified. But breakage of umbilical cowl is confirmed in pressure load condition. So design of umbilical cowl is modified for satisfying required structural strength. And structural strength of umbilical cowl through analysis is verified.

  • PDF

Study on the Static/Dynamic Measurements and Structural Analysis Procedure of Wheel Loaders (휠로더의 정적/동적 실차 계측 및 강도 평가법에 대한 연구)

  • Choung, Joon-Mo;Kim, Gyu-Sung;Jang, Young-Sik;Choe, Ick-Hung;Heo, Min-Soo
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1303-1309
    • /
    • 2003
  • This paper presents the static and dynamic measurements for the strength and motion characteristics as well as the improved procedures to assess strength of wheel loaders. Two scenarios for static measurement were decided by which cylinder was actuating. The dynamic measurement was performed for two types of motion, that is, simple reciprocation of the working devices and actual working motion including traveling, digging and dumping. The measured items were stresses, cylinder pressures and strokes. Stress induced by bucket working showed higher level than that by boom working. The measured cylinder speeds were relatively superior to the design speeds. Working stress histories were thought to be closer to static rather than dynamic. A fully assembled FE model was prepared for structural analysis. In this paper, a more simple method was suggested to avoid nonlinearity caused by heave of rear frame under digging forces. Also how brake affected on structural behavior and digging force was examined closely in relation with tire pressure. It was confirmed that the overall stress level of wheel loader during turning traveling with loaded bucket was far lower than the yield stress of material.

  • PDF

Numerical investigations on anchor channels under quasi-static and high rate loadings - Case of concrete edge breakout failure

  • Kusum Saini;Akanshu Sharma;Vasant A. Matsagar
    • Computers and Concrete
    • /
    • v.32 no.5
    • /
    • pp.499-511
    • /
    • 2023
  • Anchor channels are commonly used for façade, tunnel, and structural connections. These connections encounter various types of loadings during their service life, including high rate or impact loading. For anchor channels that are placed close and parallel to an edge and loaded in shear perpendicular to and towards the edge, the failure is often governed by concrete edge breakout. This study investigates the transverse shear behavior of the anchor channels under quasi-static and high rate loadings using a numerical approach (3D finite element analysis) utilizing a rate-sensitive microplane model for concrete as constitutive law. Following the validation of the numerical model against a test performed under quasi-static loading, the rate-sensitive static, and rate-sensitive dynamic analyses are performed for various displacement loading rates varying from moderately high to impact. The increment in resistance due to the high loading rate is evaluated using the dynamic increase factor (DIF). Furthermore, it is shown that the failure mode of the anchor channel changes from global concrete edge failure to local concrete crushing due to the activation of structural inertia at high displacement loading rates. The research outcomes could be valuable for application in various types of connection systems where a high rate of loading is expected.

Seismic Qualification Analysis of a Vertical-Axis Wind Turbine (소형 수직축 풍력발전기의 내진검증 해석)

  • Choi, Young-Hyu;Hong, Min-Gi
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.3
    • /
    • pp.21-27
    • /
    • 2016
  • The static and dynamic structural integrity qualification was performed through the seismic analysis of a small-size Savonius-type vertical wind turbine at dead weight plus wind load and seismic loads. The ANSYS finite element program was used to develop the FEM model of the wind turbine and to accomplish static, modal, and dynamic frequency response analyses. The stress of the wind turbine structure for each wind load and dead weight was calculated and combined by taking the square root of the sum of the squares (SRSS) to obtain static stresses. Seismic response spectrum analysis was also carried out in the horizontal (X and Y) and vertical (Z) directions to determine the response stress distribution for the required response spectrum (RRS) at safe-shutdown earthquake with a 5% damping (SSE-5%) condition. The stress resulting from the seismic analysis in each of the three directions was combined with the SRSS to yield dynamic stresses. These static and dynamic stresses were summed by using the same SRSS. Finally, this total stress was compared with the allowable stress design, which was calculated based on the requirements of the KBC 2009, KS C IEC 61400-1, and KS C IEC 61400-2 codes.

Evaluation of Progressive Collapse Resistance of Steel Moment Frame with WUF-B Connection and Composite Slab using Equivalent Energy-based Static Analysis (WUF-B 접합부 및 합성슬래브로 설계된 철골모멘트골조의 에너지 기반 근사해석을 이용한 연쇄붕괴 저항성능 평가)

  • Noh, Sam-Young;Park, Ki-Hwan;Hong, Seong-Cheol;Lee, Sang-Yun
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.2
    • /
    • pp.19-28
    • /
    • 2018
  • The progressive collapse resistance performance of a steel structure constructed using the moment frame with the WUF-B connection and the composite slabs was evaluated. GSA 2003 was adapted for the evaluation. Additionally the structural robustness and the sensitivity against the progressive collapse were analyzed. In the numerical analysis, a reduced model comprised of the beam and spring elements for WUF-B connection was adapted. The composite slab was modeled using the composite-shell element. Instead of the time-consuming dynamic analysis for the effect of the sudden column removal, the equivalent energy-based static analysis was effectively applied. The analysis results showed that the structure was the most vulnerable to in the case of the internal column removal, however it satisfied the chord rotation criterion of GSA 2003 due to the contribution of the composite slab which improved the stiffness of structure. In the robustness evaluation, the structural performance showed more than 2.5 times of the requirement according to GSA 2003, and the structural sensitivity analysis indicated the decrease of 33% of the initial structural performance.