• Title/Summary/Keyword: static pressure efficiency

Search Result 129, Processing Time 0.584 seconds

Removal Characteristics of Nitrogen Oxides (NOx) in Low Concentration using Peat-Mixed Media (피트(peat) 혼합담체를 이용한 저농도 질소산화물(NOx) 제거특성)

  • Kang, Young-Heoun;Kim, Deok-Woo;Kang, Seon-Hong;Kwon, Pil-Joo;Kim, Dal-Woo;Hwang, Pil-Gi;Shim, Sang-Bo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.3
    • /
    • pp.330-338
    • /
    • 2010
  • In this study, removal characteristics of nitrogen oxides $(NO_x)$ from road transport by using peat as the packing media for biodegradation have been investigated in the long term. Physicochemical and biological treatment of peatmixed media eliminates any requirement to use chemical substances and also facilitates the biodegradable actions of microorganism. Safe biodegradation of pollutants, no need to apply additional microbes owing to their active growth, and no generation of secondary pollutants were found in this experiment. It was concluded that average removal efficiencies of nitric oxide (NO) and nitrogen dioxide $(NO_2)$ were 80% and 97% respectively with respect to the linear velocity 35~40 mm/s and 0.3 ppm ozone concentration in the long period operation. Inflow concentration of nitric oxide over 0.05 ppm was suitable when pretreated with ozone. Non-ozone stage was performed with linear velocity 20~100 mm/s and then the average removal efficiency of nitric oxide and nitrogen dioxide were 38% and 94% respectively. Other results showed that the apparent static pressure was raised with increases in applied water content and aerial velocity in mixed media during fan operation.

Venturi Effects Induced by the Local Ventilation Fan in Large-Opening Room-and-Pillar Mining Sites (대단면 갱내 국부 선풍기의 벤츄리(Venturi) 효과 연구)

  • Lee, Chang Woo;Nguyen, Van Duc
    • Tunnel and Underground Space
    • /
    • v.24 no.6
    • /
    • pp.464-472
    • /
    • 2014
  • In large-opening room-and-pillar mining sites, particularly without the devices for the ventilation control, the airflow pattern created by the local fan operation is too complicated to quantify and also shows low ventilation efficiency. This study aims at performing a series of CFD analysis for the so-called venturi effects of the local fans; the effects of increasing airflow rate along the axis downstream of fan resulting from increased kinetic energy and subsequently decreased static pressure in the downstream. Effects of the fan type and installation height are compared. 1 vane-axial fan and 2 propeller fans are analyzed for their venturi effects, while the vane-axial fan was installed at the height of 1.0, 1.5 and 2.0m for comparison. The results can be applied to improve the economy and efficiency of local fans for securing better air quality and work environment management.

Influence of Discharge Voltage-Current Characteristics on CO2 Reforming of Methane using an Elongated Arc Reactor (신장 아크 반응기를 이용한 메탄 CO2 개질반응에서 방전 전압-전류특성의 영향)

  • Kim, Kwan-Tae;Hwang, Na-Kyung;Lee, Jae-Ok;Lee, Dae-Hoon;Hur, Min;Song, Young-Hoon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.6
    • /
    • pp.683-689
    • /
    • 2010
  • Reforming of methane with carbon dioxide has been carried out using a bipolar pulse driven elongated arc reactor operating at atmospheric pressure and non-equilibrium regime. This plasma reactor is driven by two kinds of power supply, characterized by different voltage-current characteristics under the same operating power and frequency. Varying the $CO_2/CH_4$ ratio and the discharge power, the conversion rate, yield, and reforming efficiency for the two power supplies are investigated in conjunction with the static and dynamic behaviors of voltage and current. It is found that not only the values of voltage and current but also their shapes give an influence on the reforming performances. Finally, a better electrical operation regime for the efficient plasma reforming is proposed based on the relationship between the voltage-current characteristics and the reforming performance.

Off-design Performance Analysis based on Experimental Data of a Micro Gas Turbine Engine (실험데이터 기반 마이크로 가스터빈엔진 탈 설계점 성능해석)

  • Kim, Seungjae;Choi, Seongman;Rhee, Dongho
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.6
    • /
    • pp.64-71
    • /
    • 2018
  • It is essential to understand the characteristics of gas turbine components in order to carry out an off-design analysis of a gas turbine engine. In this study, a micro gas turbine engine test system was constructed to understand the performance characteristics of gas turbines. The temperature and pressure in the flow path of the micro gas turbine was collected by measuring the engine spool speed, and a compressor map was constructed by using the experimental data. The exhaust gas was collected at the turbine outlet and the combustion efficiency was calculated. An off-design performance analysis at ground static was performed using GasTurb software by applying the compressor map and combustion efficiency obtained from the experimental data. Futhermore, we compared and evaluated the analysis results with engine operating data.

Joint Design and Strength Evaluation of Composite Air Spoiler for Ship (선박용 복합재 에어 스포일러의 체결부 설계 및 강도 평가)

  • Pi, June-Woo;Jeon, Sang-Bae;Lee, Guen-Ho;Jo, Young-Dae;Choi, Jin-Ho;Kweon, Jin-Hwe
    • Composites Research
    • /
    • v.28 no.4
    • /
    • pp.219-225
    • /
    • 2015
  • Air spoiler, which can reduce the drag during operation, can be considered as a possible means to reduce carbon dioxide emission and to increase fuel efficiency. In this study, a composite air spoiler was designed and tested by static and repeated loads. The Green Water Pressure of 0.1 MPa a ship experiences during operation was perpendicularly applied to the air spoiler. Air spoiler was manufactured with sandwich panel which has glass fabric face and balsa core. Multiple sandwich panels were assembled to steel frame by bolt joint. The joint was designed to have bearing failure and examined by static and fatigue tests. Tests showed that the designed joint has enough margin of safety to endure joint failure. The developed sandwich panel to air spoiler is planned to be applied to a large scale commercial ship.

Use of Accelerated Solvent Extraction Method for Determination of Residual Pesticides in Agricultural Products (농산물의 잔류농약분석을 위한 가속용매추출 (Accelerated Solvent Extraction) 방법의 이용)

  • Lee, Sung-Woo;Seo, Hye-Young;Han, Byung-Jae;Jeong, Yang-Mo;Kim, Jun-Hyoung;No, Ki-Mi;Kim, Kyong-Su
    • Applied Biological Chemistry
    • /
    • v.47 no.2
    • /
    • pp.228-237
    • /
    • 2004
  • ASE (accelerated solvent extraction) was used to develop an analytical method for reducing the sample preparation time in pesticide residues analyses of agricultural produce. The conditions of ASE were as follows: preheat 1 min, heat 5 min, static 1 min, solvent flush% 60 vol., nitrogen purge 60 sec, 4 cycles, 1,500 psi pressure, and $100^{\circ}C$ temperature. When n-hexane:acetone (4 : l, v/v) was used as, an extraction solvent, the extraction and purification efficiency of ASE did not show the considerable difference compared with solvent extraction, and the reduction of extraction solvent did not affect the performance of extraction. It was proved that ASE method can reduce, sample preparation time as the extraction and purification steps were combined, and the extraction solvent was significantly reduced.

Thermally Stratified Hot Water Storage (태양열의 성층축열과 주택이용에 관한 연구(성층축열))

  • Pak, Ee-Tong
    • Solar Energy
    • /
    • v.10 no.3
    • /
    • pp.3-12
    • /
    • 1990
  • This paper deals with experimental research to increase thermal storage efficiency of hot water stored in an actual storage tank for solar application. The effect of increased energy input rate due to stratification has been discussed and illustrated through experimental data, which was taken by changing dynamic and geometric parameters. Ranges of the parameters were defined for flow rate, the ratio of diameter to height of the tank and inlet-exit water temperature difference. During the heat storage, when the flow was lower, the temperature difference was larger and the ratio of diameter to height of the tank was higher, the momentum exchange decreased. As for this experiment, when the flow rate was 8 liter/min, the temperature difference was $30^{\circ}C$ and the ratio of diameter to height of the tank was 3, the momentum exchange was minimized resulting in a good thermocline and a stable stratification. In the case of using inlet ports, if the modified Richardson number was less than 0.004, full mixing occured and so unstable stratification occured, which mean that this could not be recommended as storage through thermal stratification. Using a distributor was better than using inlet ports to form a sharp thermocline and to enhance the stratification. It was possible to get storage efficiency of 95% by using the distributor, which was higher than a storage efficiency of 85% obtained by using inlet ports in same operation condition. Furthermore, if the distributor was manufactured so that the mainpipe decreases in diameter toward the dead end to maintain constant static pressure, it might be predicted that further stable stratification and higher storage efficiency are obtainable(ie:more than 95%).

  • PDF

A Study on the Performance of the Hybrid Ventilation System for Apartment Houses (공동주택의 하이브리드 환기시스템 성능평가 연구)

  • Chun, Chu-Young;Kim, Gil-Tae;Kim, Sang-Hee
    • Land and Housing Review
    • /
    • v.3 no.1
    • /
    • pp.89-96
    • /
    • 2012
  • The purpose of this study was to evaluate the applicability of hybrid ventilation system in apartment housings and present a design method to improve the performance of hybrid ventilation system using the CFD simulation. As the object of CFD simulation, a small apartment houses with area of $51m^2$ and $81m^2$ were selected and evaluated. The test hybrid ventilation system are window frame natural air supply & duct exhaust hybrid system(Hybrid 1) and window frame natural air supply & bathroom and livingroom exhaust hybrid ventilation system(Hybrid 2). To evaluate the ventilation efficiency, we used the locations of diffuser installed for each system as the variables through the CFD simulation. In the case of Hybrid 1, the ventilation efficiency of the exhaust duct diffuser located on the inside room was higher rather than the exhaust duct diffuser located on the entrance. In the case of Hybrid 2, the most efficient system was the system that the diffuser connecting the bathroom static pressure fan is installed on the center of the living room. The ventilation efficiency of the Hybrid 2 in the case of $51m^2$ type was more than 20% of the Hybrid 1. But, The ventilation efficiency of the Hybrid 2 in the case of $84m^2$ type was more than 14% of the Hybrid 1. Therefore, to apply the Hybrid ventilation, a study that considers various variable should be conducted.

Optimal Design for the Rotor Overlap of a Supersonic Impulse Turbine to Improve the Performance (초음속 충동형 터빈 성능개선을 위한 동익 오버랩 최적설계)

  • Cho, Jongjae;Shin, Bong Gun;Kim, Kuisoon;Jeong, Eunhwan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.1
    • /
    • pp.33-41
    • /
    • 2014
  • In a supersonic turbine, A rotor overlap technique reduced the chance of chocking in the rotor passage, and made the design pressure ratio satisfied. However, the technique also made additional losses, like a pumping loss, expansion loss, etc. Therefore, an approximate optimization technique was appled to find the optimal shape of overlap which maximizes the improvement of the turbine performance. The design variables were shape factors of a rotor overlap. An optimal design for rotor overlap reduces leakage mass flow rate at tip clearance by about 50% and increases about 4% of total-static efficiency compared with the base model. It was found that the most effective design variable is the tip overlap and that the hub overlap size is the lowest.

Leakage Flow Influence on SHF pump model performances

  • Dupont, Patrick;Bayeul-Laine, Annie-Claude;Dazin, Antoine;Bois, Gerard;Roussette, Olivier;Si, Qiaorui
    • International Journal of Fluid Machinery and Systems
    • /
    • v.8 no.3
    • /
    • pp.193-201
    • /
    • 2015
  • This paper deals with the influence of leakage flow existing in SHF pump model on the analysis of internal flow behaviour inside the vane diffuser of the pump model performance using both experiments and calculations. PIV measurements have been performed at different hub to shroud planes inside one diffuser channel passage for a given speed of rotation and various flow rates. For each operating condition, the PIV measurements have been trigged with different angular impeller positions. The performances and the static pressure rise of the diffuser were also measured using a three-hole probe. The numerical simulations were carried out with Star CCM+ 9.06 code (RANS frozen and unsteady calculations). Some results were already presented at the XXth IAHR Symposium for three flowrates for RANS frozen and URANS calculations. In the present paper, comparisons between URANS calculations with and without leakages and experimental results are presented and discussed for these flow rates. The performances of the diffuser obtained by numerical calculations are compared to those obtained by the three-holes probe measurements. The comparisons show the influence of fluid leakages on global performances and a real improvement concerning the efficiency of the diffuser, the pump and the velocity distributions. These results show that leakage is an important parameter that has to be taken into account in order to make improved comparisons between numerical approaches and experiments in such a specific model set up.