• Title/Summary/Keyword: static parameters

Search Result 1,194, Processing Time 0.029 seconds

A Study on the Flying Characteristics of Zero-Load Sliders (제로-로드 슬라이더의 부상특성에 관한 연구)

  • 윤상준;강태식;최동훈
    • Tribology and Lubricants
    • /
    • v.11 no.2
    • /
    • pp.15-23
    • /
    • 1995
  • A zero-load slider is composed of two outside rails which produce a lift force pushing up the slider from the disk surface and a wide reverse step region which produces a suction force attracting the slider to the disk surface. In this paper, the flying characteristics of zero-load sliders are obtained by using an optimization technique. In the pressure calculation module, the FIFD scheme is used to solve the modified Reynolds equation. The BFGS method and a line search algorithm is employed to predict the static flying attitude. To investigate the effect of the geometric- parameters of zero-load sliders on the flying characteristics, recess depth, front step width, rail width, and taper height are varied and the corresponding flying attitudes are obtained. Simulation results demonstrate that recess depth and rail width have significant influences on the flying characteristics.

An Analysis of Herringbone Groove Journal Bearing Considering Groove Shape (그루브형상을 고려한 빗살무늬저널베어링의 유한요소해석)

  • 신동우;임윤철
    • Tribology and Lubricants
    • /
    • v.16 no.6
    • /
    • pp.425-431
    • /
    • 2000
  • Herringbone groove journal bearing (HGJB) is developed to improve the static and dynamic performances of hydrodynamic journal bearing. Conventional studies on HGJB were based on the Narrow Groove theory assuming that the number of grooves approaches infinity. In this study, an oil lubricated HGJB is analyzed using Finite Element Method. Load carrying capacity, attitude angle, stiffness and damping coefficients are obtained numerically for various bearing configurations especially for the inclined width ratio and asymmetric ratio and compared with the results obtained using Finite Volume Method. The bearing load and stability characteristics are dependent on geometric parameters such as inclined width ratio, asymmetric ratio, groove depth ratio, groove width ratio, and groove angle.

3차원 절삭가공에서의 2자유도 채터안정성 해석

  • 김병룡;강명창;김정석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.31-35
    • /
    • 2001
  • Three dimensional dynamic cutting can be postulated as an equivalent orthogonal dynamic cutting through the plane containing both the cutting vector and the chip flow velocity vector in cutting process. An analytical expression of dynamic cutting force is obtained from the cutting parameters determined by the static three dimensional cutting experiments. Particular attention is paid to the energy supplied to the vibration of the tool behind the vertical vibration and the direction. The phase lag of the horizontal vibration of the tool behind the vertical vibration and the direction angel of the fluctuating cutting force must be regarded in point of stability limits. Chatter vibration can effectively be suppressed by enlarging the dynamic rigidity of the cutting system in the vertical cutting force direction. A good agreement is found between the stability limits predicted by theory and the critical width of cut determined by experiments.

Shear Strength of Grout Type Transverse Joint

  • Kim, Yoon-Chil;Park, Jong-Jin
    • KCI Concrete Journal
    • /
    • v.14 no.1
    • /
    • pp.8-14
    • /
    • 2002
  • This is the first of two part series on experimental studies of grout type transverse joints. In this study, grout type transverse joints between precast concrete slabs are statically tested to determine the cracking loads and ultimate shear capacities of the grout type transverse joints. The tests are performed with a loading equipment designed and constructed especially in the lab to induce shear failures on the joints of the test specimens. Shape of the transverse joints, grouting materials and amount of prestress are selected as test parameters for the study. The results indicate that epoxy is an excellent grouting material which can be used in limited locations where large tensile stress is acting on the slab. Longitudinal prestressing is also an effective method to increase the shear strength of the transverse joints. A rational method to estimate the cracking and ultimate loads for the design of grout type transverse joints is proposed based on the static loading tests. Success of the tests with shear loading equipment allowed continuing the research further onto the fatigue strength of the grout type joints, which will be presented in the second part of the paper.

  • PDF

An Experimental Study on Damage Assessment of Reinforced Concrete Beams (철근 콘크리트 보의 손상평가에 대한 실험적 연구)

  • Roh Won Kyoun;Shim Chang Su;Hong Chang Kuk;Kim Ki Bong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.60-63
    • /
    • 2004
  • The paper deals with the damage assessment of the concrete beam using static displacements and the flexural stiffness reduction of the beam was evaluated. Simply supported concrete beams were loaded at the mid-span, and the applied load level ranged $20\%,\;40\%,\;80\%$ of the flexural strength of the beam. When the displacements from the tests were increased more than $10\%$ of the initial values, flexural cracks occured. Judging from the observed cracks, damaged area of the beams were assumed and the stiffness reduction using the smeared-cracking concept was estimated to minimize the error between the test results and analytical results. Four stages of the behavior of a RC beam, which are uncracked, initial cracking, stabilized cracking and post-yielding, can be considered to assess the damage of RC beams. Main parameters for the assessment were cracking area and the stiffness reduction ratio. In each stage, damaged elements and their stiffness reduction were estimated to minimized the error.

  • PDF

Performance Evaluation of the Model Predictive Control Logic Key Parameters for APR1400 (APR1400용 모델 예측 제어 로직에서의 주요 제어변수 변동에 따른 성능 평가)

  • Yang, Seung-Ok;Choi, Yu-Sun;Na, Man-Gyun
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.411-412
    • /
    • 2008
  • 본 논문에서는 차세대원자로인 APR1400(Advanced Power Reactor 1400)의 출력제어방법으로 모델예측제어 알고리즘을 적용하고, 일일부하추종 운전을 하였을 때 최적의 제어기 구현을 위해 제어 로직의 주요 변수인 예측구간, 제어구간, 모델 차수의 변화에 따른 제어 성능을 평가하였다. 성능 평가는 원자로 출력제어 성능 검증시 사용하는 방법으로 제어대상인 차세대 원자로(APR1400)를 3차원 노심해석 전산코드인 MASTER(Multipurpose Analyzer for Static and Transient Effects of Reactor)로 시뮬레이션하여 제어 성능을 평가하였다.

  • PDF

Comparison of Particle Swarm Optimization and the Genetic Algorithm in the Improvement of Power System Stability by an SSSC-based Controller

  • Peyvandi, M.;Zafarani, M.;Nasr, E.
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.182-191
    • /
    • 2011
  • Genetic algorithms (GA) and particle swarm optimization (PSO) are the most famous optimization techniques among various modern heuristic optimization techniques. These two approaches identify the solution to a given objective function, but they employ different strategies and computational effort; therefore, a comparison of their performance is needed. This paper presents the application and performance comparison of the PSO and GA optimization techniques for a static synchronous series compensator-based controller design. The design objective is to enhance power system stability. The design problem of the FACTS-based controller is formulated as an optimization problem, and both PSO and GA optimization techniques are employed to search for the optimal controller parameters.

Analysis of an Elastomeric O-ring Seal Compressed and Highly Pressurized Under One-sided Laterally Constrained (단 측벽 구속하에서 압축 및 고압을 받는 고무 오링의 해석)

  • Park, Sung-Han;Kim, Jae-Hoon
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.5
    • /
    • pp.13-20
    • /
    • 2007
  • Elastomeric O-ring seals are widely used in static and dynamic applications. A compressed and highly pressurized O-ring seal inserted under laterally one-sided constrained condition has been analyzed experimentally and numerically. The deformed shape and extrusion length of the O-ring under high pressure has been measured by the computed tomography. Through the comparison of experimental and FE results, the numerical analysis technique has been verified. Using verified FE method, the contact stress profiles at sealing surfaces have been investigated and their relevance to the 0-ring performance evaluated based on stress-related and displacement-related parameters. It has been found that the contact stress profiles and deformation behaviors of the seal are affected by friction coefficient, gap clearance, and pressure considerably.

DESIGN OF A HIGH-SPEED HIGH-POWER SWITCHED RELUCTANCE MOTOR

  • Jacket F. Gieras;Park, Jaeho
    • Journal of Power Electronics
    • /
    • v.1 no.1
    • /
    • pp.19-25
    • /
    • 2001
  • A high speed, three phase, 12/8 pole, 225 kW switched reluctance motor (SRM) has been designed and analyzed. A circuital approach has been used to find the geometry, windings parameters and electromagnetic loading. Then, the 3D finite element method (FEM) has been used to calculate the static torque more accurately and optimize the design. The efficiency of the designed SRM is almost constant over wide range of speed and its phase current is less sensitive to the speed than that of an induction motor of the same rating. Recommendations for manufacturers and users are given.

  • PDF

Linear Pulse Motor Characteristics Analysis using Non-linear Simulation (비선형 시뮬레이션에 의한 리니어 펄스모터의 특성해석)

  • Lee, Je-Hie;Huh, Uk-Youl
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.584-587
    • /
    • 1992
  • Because linear motor directly drives linear motion, it does not need conversion equipment such as belt and gear. Especially linear pulse motor provide more precise positioning and large force of linear pulse motors. As current manufacture technic of linear pulse motor is much to be desired at home. This motor lay out to make use of computer aided design program, In this paper the experimental motor is 2-phases 4-poles hybrid pulse motor which has teeth per pole Simulation program is divided its function into 4 parts - air gap permeance analysis, permanent magnet & non-linear core operating point determine, winding configuration, leakage flux analysis. It is possible to make motor static and magnetic characteristics for this simulation program. Also, by varying input parameters of the program, experimental motor is to be compared to motor characteristics.

  • PDF