• Title/Summary/Keyword: static parameters

Search Result 1,194, Processing Time 0.028 seconds

Static and Dynamic Characteristics of Electro - hydraulic Proportional Throttle Control Valve (전자 유압식 비례 교축 제어 밸브의 특성)

  • 오인호;이일영
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.17 no.4
    • /
    • pp.87-99
    • /
    • 1993
  • Nowadays, the cartridge valve can be controlled proportionally in remote place by adopting proportional solenoid and it becomes widely used as control component in hydraulic systems. Especially, multi stage proportional valve is attractive because it consumes less input power though its characteristics might slightly be defected. But, the system parameter should be carefully chosen to obtain optimistic characteristics. This study concerning three stage proportional throttle control valve is purposed to examine the influences of paameters to the dynamic characteristics. The typical transient and frequency responses of proportional throttle control valve were inspected through the experiments and compared to those derived from the theoritical analyses. And it was confirmed that the analyses are appropriate. Then the influences of various system parameters to the dynamic characteristics were examined by means of simulations. For the analyses, the basic equations derived from lumped model were linearized and the linearized equations were transformed to the transfer functions between inputs and outputs. Then the transient responses and frequency responses were obtained from transfer functions. 1. It is appropriate to estimate the dynamic characteristics of valve which has relatively sophisticated structure by means of system analyses using linearized equations. 2. Though the valve has two pilot stages, fairly good characteristics can be obtained by carefully choosing system parameters. 3. Main valve very quickly follows the movement of second pilot valve when the parameters of main valve(the oil supply passage and discharge passage fpr second pilot valve) are appropriately chosen.

  • PDF

Variation in Physiological Energetics of the Ark Shell Scapharca broughtonii (Bivalvia: Arcidae) from Gamak Bay, South Coast of Korea

  • Shin, Yun-Kyung;Choi, Yoon-Seok;Kim, Eung-Oh;Sohn, Sang-Gyu
    • Fisheries and Aquatic Sciences
    • /
    • v.12 no.4
    • /
    • pp.331-338
    • /
    • 2009
  • This study presents physiological rates of respiration and excretion, clearance rate, and assimilation efficiency of the ark shell Scapharca broughtonii, determined during 2007 from specimens collected in Gamak Bay on the south coast of Korea. Physiological parameters were measured monthly under static, laboratory controlled conditions with ambient conditions, and measurements were performed seasonally in order to estimate scope for growth and its probable sources of variation. Temperature directly influenced respiration and excretion. Clearance rates showed a tendency to be low during May-August, which is a period of gametogenesis. Assimilation efficiency was not significantly different seasonally and was independent of the concentration of chlorophyll a. The scope for growth was negative during high-temperature months (July-August), reflecting the high temperature and low clearance rate, and had its highest positive values during spring and autumn. The energy budget or growth potential of bivalves has been applied to other economically important species. Data on the physiological parameters and scope for growth of S. broughtonii obtained in this study will be used to assess the carrying capacity for ark shell cultivation.

A new statistical approach for joint shear strength determination of RC beam-column connections subjected to lateral earthquake loading

  • Kim, Jaehong;LaFavet, James M.;Song, Junho
    • Structural Engineering and Mechanics
    • /
    • v.27 no.4
    • /
    • pp.439-456
    • /
    • 2007
  • Reinforced concrete (RC) joint shear strength models are constructed using an experimental database in conjunction with a Bayesian parameter estimation method. The experimental database consists of RC beam-column connection test subassemblies that maintained proper confinement within the joint panel. All included test subassemblies were subjected to quasi-static cyclic lateral loading and eventually experienced joint shear failure (either in conjunction with or without yielding of beam reinforcement); subassemblies with out-of-plane members and/or eccentricity between the beam(s) and the column are not included in this study. Three types of joint shear strength models are developed. The first model considers all possible influence parameters on joint shear strength. The second model contains those parameters left after a step-wise process that systematically identifies and removes the least important parameters affecting RC joint shear strength. The third model simplifies the second model for convenient application in practical design. All three models are unbiased and show similar levels of scatter. Finally, the improved performance of the simplified model for design is identified by comparison with the current ACI 352R-02 RC joint shear strength model.

Study on design parameters of leaning-type arch bridges

  • Li, Ying;Xiao, Ru-Cheng;Sun, Bin
    • Structural Engineering and Mechanics
    • /
    • v.64 no.2
    • /
    • pp.225-232
    • /
    • 2017
  • Leaning-type arch bridge is a new spatial structural system composed of two vertical arches and two leaning arches. So far there has been no contrast analysis of leaning type arch bridge with different systems. This paper focus on a parametric study of leaning type arch bridge with different systems to find the influential rules on structural forces and stability and to provide some reference for practical designs. The parametric analysis is conducted with different rise-to-span ratios and bending rigidities of arch ribs by comparing internal forces. The internal forces decline obviously with the increase of the rise-to-span ratio. The bending moments at the centers of the main arches and the leaning arches are sensitive to the bending rigidities of arch ribs. Parametric studies are also carried out with different structural systems and leaning angles of the leaning arch by comparing the static stability. The lateral stiffness of leaning-type arch bridge is less than the in-plan stiffness. Compared with the leaning-type arch bridge without thrust, the leaning-type arch bridge with thrust has a lower stability safety coefficient. The stability safety coefficient rises gradually with the increase of inclining angle of the leaning arch. This study shows that the rise-to-span ratio, bending rigidities of arch ribs, structural system and leaning angles of the leaning arch are all critical design parameters. Therefore, these parameters in unreasonable range should be avoided.

A Study on the Drape Profile Analysis of the Apparel Textiles and 3D Virtual Textiles using a 3D Digital Clothing Software (3D 가상패션소재의 드레이프성 연구 - 3D 의상 CAD 시스템 활용 -)

  • Lee, Yoon-Ju;Kim, Jong-Jun
    • Journal of Fashion Business
    • /
    • v.15 no.5
    • /
    • pp.103-114
    • /
    • 2011
  • During a wearer's movement, the apparel fabric layers collide each other in a highly complicated manner. The collision involves cloth-cloth, and cloth-body collision. The diversity of the textile fabrics, including silk, wool, cotton, and other synthetic fibers, together with the complex details of the apparel construction, makes the collision and other calculation procedure involved in the 3-dimensional clothing software system much more complicated. Therefore, there is a need to measure the behavior of the fabrics during the fabric collision cycles. In this study, as a first step, static measurements pertinent to the factors governing the appearance of the apparel fabrics were implemented. The drape profile, stiffness(Sd and Sf), tensile properties, thickness, and the air permeability were measured. The correlation between the parameters were calculated and reviewed. It is found that there is a high correlation of 0.97 between the actual fabric drape parameters and the 3D virtual fabric drape parameters. The measured drape coefficients of the fabrics show relatively good correlation with the measured fabric stiffness.

Tempereture Dependent Dielectric Relaxation Study of Aniline in Dimethylsulphoxide and Dimethlformamide Using Time Domain Technique (시간분해기법을 이용한 디메틸 술폭사이드와 디메틸 포름아미드-아닐린용액에서 온도의존 유전이완에 관한 연구)

  • Chaudhari, Ajay;Patil, C.S.;Shankarwar, A.G.; Arbad, B.R.;Mehrotra, S.C.
    • Journal of the Korean Chemical Society
    • /
    • v.45 no.3
    • /
    • pp.201-207
    • /
    • 2001
  • The dielectric relaxation study for aniline-dimethylsulphoxide (DMSO) and aniline-dim.ethylformamide(DMF) has been carried out using the Time domain reflectometry (TDR) technique, at different temperature and concentrations, in the frequency range of 10 MHz to 10 GHz. The dielectric parameters viz. static permittivity, relaxation time, the Kirkwood correlation factor, excess permittivity, excess inverse relaxation time and thermodynamic parameters have been obtained. The calibration method based on least squares fit method has been used. The dielectric parameters show systematic change with temperature and concentrations.

  • PDF

Mass and Heat Transfer Analysis of Membrane Humidifier with a Simple Lumped Mass Model (단순모델을 이용한 막 가습기 열 및 물질 전달 특성 해석)

  • Yu, Sang-Seok;Lee, Young-Duk;Bae, Ho-June;Hwang, Joon-Young;Ahn, Kook-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.8
    • /
    • pp.596-603
    • /
    • 2009
  • The performance of proton exchange membrane fuel cell (PEMFC) is seriously changed by the humidification condition which is intrinsic characteristics of the PEMFC. Typically, the humidification of fuel cell is carried out with internal or external humidifier. A membrane humidifier is applied to the external humidification of residential power generation fuel cell due to its convenience and high performance. In this study, a simple static model is constructed to understand the physical phenomena of the membrane humidifier in terms of geometric parameters and operating parameters. The model utilizes the concept of shell and tube heat exchanger but the model is also able to estimate the mass transport through the membrane. Model is constructed with FORTRAN under Matlab/$Simulink^{(R)}$ $\Box$environment to keep consistency with other components model which we already developed. Results shows that the humidity of wet gas and membrane thickness are critical parameters to improve the performance of the humidifier.

Fiber element-based nonlinear analysis of concrete bridge piers with consideration of permanent displacement

  • Ansari, Mokhtar;Daneshjoo, Farhad;Safiey, Amir;Hamzehkolaei, Naser Safaeian;Sorkhou, Maryam
    • Structural Engineering and Mechanics
    • /
    • v.69 no.3
    • /
    • pp.243-255
    • /
    • 2019
  • Utilization of fiber beam-column element has gained considerable attention in recent years due mainly to its ability to model distributed plasticity over the length of the element through a number of integration points. However, the relatively high sensitivity of the method to modeling parameters as well as material behavior models can pose a significant challenge. Residual drift is one of the seismic demands which is highly sensitive to modeling parameters and material behavior models. Permanent deformations play a prominent role in the post-earthquake evaluation of serviceability of bridges affected by a near-fault ground shaking. In this research, the influence of distributed plasticity modeling parameters using both force-based and displacement-based fiber elements in the prediction of internal forces obtained from the nonlinear static analysis is studied. Having chosen suitable type and size of elements and number of integration points, the authors take the next step by investigating the influence of material behavioral model employed for the prediction of permanent deformations in the nonlinear dynamic analysis. The result shows that the choice of element type and size, number of integration points, modification of cyclic concrete behavior model and reloading strain of concrete significantly influence the fidelity of fiber element method for the prediction of permanent deformations.

Estimation of 3D active earth pressure under nonlinear strength condition

  • Zhang, D.B.;Jiang, Y.;Yang, X.L.
    • Geomechanics and Engineering
    • /
    • v.17 no.6
    • /
    • pp.515-525
    • /
    • 2019
  • The calculation of active earth pressure behind retaining wall is a typical three-dimensional (3D) problem with spatial effects. With the help of limit analysis, this paper firstly deduces the internal energy dissipation power equations and various external forces power equations of the 3D retaining wall under the nonlinear strength condition, such as to establish the work-energy balance equation. The pseudo-static method is used to consider the effect of earthquake on active earth pressure in horizontal state. The failure mode is a 3D curvilinear cone failure mechanism. For the different width of the retaining wall, the plane strain block is inserted in the symmetric plane. By optimizing all parameters, the maximum value of active earth pressure is calculated. In order to verify the validity of the new expressions obtained by the paper, the solutions are compared with previously published solutions. Agreement shows that the new expressions are effective. The results of different parameters are given in the forms of figures to analysis the influence caused by nonlinear strength parameters.

A hybrid artificial intelligence and IOT for investigation dynamic modeling of nano-system

  • Ren, Wei;Wu, Xiaochen;Cai, Rufeng
    • Advances in nano research
    • /
    • v.13 no.2
    • /
    • pp.165-174
    • /
    • 2022
  • In the present study, a hybrid model of artificial neural network (ANN) and internet of things (IoT) is proposed to overcome the difficulties in deriving governing equations and numerical solutions of the dynamical behavior of the nano-systems. Nano-structures manifest size-dependent behavior in response to static and dynamic loadings. Nonlocal and length-scale parameters alongside with other geometrical, loading and material parameters are taken as input parameters of an ANN to observe the natural frequency and damping behavior of micro sensors made from nanocomposite material with piezoelectric layers. The behavior of a micro-beam is simulated using famous numerical methods in literature under base vibrations. The ANN was further trained to correlate the output vibrations to the base vibration. Afterwards, using IoT, the electrical potential conducted in the sensors are collected and converted to numerical data in an embedded mini-computer and transferred to a server for further calculations and decision by ANN. The ANN calculates the base vibration behavior with is crucial in mechanical systems. The speed and accuracy of the ANN in determining base excitation behavior are the strengths of this network which could be further employed by engineers and scientists.