Journal of the Earthquake Engineering Society of Korea
/
v.25
no.1
/
pp.1-9
/
2021
Most commercial buildings among existing RC buildings in Korea have a multi-story wall-frame structure where RC shear wall is commonly used as its core at stairways or elevators. The members of the existing middle and low-rise wall-frame buildings are likely arranged in ordinary details considering building occupancy, and the importance and difficulty of member design. This is because there are few limitations, considerations, and financial burdens on the code for designing members with ordinary details. Compared with the intermediate or unique details, the ductility and overstrength are insufficient. Furthermore, the behavior of the member can be shear-dominated. Since shear failure in vertical members can cause a collapse of the entire structure, nonlinear characteristics such as shear strength and stiffness deterioration should be adequately reflected in the analysis model. With this background, an 8-story RC wall-frame building was designed as a building frame system with ordinary shear walls, and the effect of reflecting the shear failure mode of columns and walls on the collapse mechanism was investigated. As a result, the shear failure mode effect on the collapse mechanism was evident in walls, not columns. Consequently, it is recommended that the shear behavior characteristics of walls are explicitly considered in the analysis of wall-frame buildings with ordinary details.
This study was conducted to investigate the residual bearing capacity of steel-concrete composite beams under high-cycle fatigue loading through experiments and theoretical analysis. Six test beams with stud connectors were designed and fabricated for static, complete fatigue, and partial fatigue tests. The failure modes and the degradation of several mechanical performance indicators of the composite beams under high-cycle fatigue loading were analyzed. A calculation method for the residual bearing capacity of the composite beams after certain quantities of cyclic loading cycles was established by introducing nonlinear fatigue damage models for concrete, steel beam, and shear connectors beginning with the material residual strength attenuation process. The results show that the failure mode of the composite beams under the given fatigue load appears to be primarily affected by the number of cycles. As the number of fatigue loadings increases, the failure mode transforms from mid-span concrete crushing to stud cutting. The bearing capacity of a 3.0-m span composite beam after two million fatigue cycles is degraded by 30.7% due to premature failure of the stud. The calculated values of the residual bearing capacity method of the composite beam established in this paper agree well with the test values, which indicates that the model is feasibly applicable.
The design codes and calculation methods related to soil-steel composite bridges and culverts only specify the minimum soil cover depth. This value is connected with the bridge span and shell height. In the case of static and dynamic loads (like passing vehicles), such approach seems to be quite reasonable. However, it is important to know how the soil cover depth affects the behaviour of soil-steel composite bridges under seismic excitation. This paper presents the results of a numerical study of soil-steel bridges with different soil cover depths (1.00, 2.00, 2.40, 3.00, 4.00, 5.00, 6.00 and 7.00 m) under seismic excitation. In addition, the same soil cover depths with different boundary conditions of the soil-steel bridge were analysed. The analysed bridge has two closed pipe-arches in its cross section. The load-carrying structure was constructed as two shells assembled from corrugated steel plate sheets, designed with a depth of 0.05 m, pitch of 0.15 m, and plate thickness of 0.003 m. The shell span is 4.40 m, and the shell height is 2.80 m. Numerical analysis was conducted using the DIANA programme based on the finite element method. A nonlinear model with El Centro records and the time history method was used to analyse the problem.
This study presents the application of two indices for the locating of cracks in Reinforced Concrete (RC) structures, as well as the development of their modified forms to overcome limitations. The first index is based on mode shape curvature and the second index is based on the fourth derivative of the mode shape. In order to confirm the indices' effectiveness, both eigenvalues coupled with nonlinear static analyses were carried out and the eigenvectors for two different damage locations and intensities of load were obtained from the finite element model of RC beams. The values of the damage-locating indices derived using both indices were then compared. Generally, the mode shape curvature-based index suffered from insensitivity when attempting to detect the damage location; this also applied to the mode shape fourth derivative-based index at lower modes. However, at higher modes, the mode shape fourth derivative-based index gave an acceptable indication of the damage location. Both the indices showed inconsistencies and anomalies at the supports. This study proposed modification to both indices to overcome identified flaws. The results proved that modified forms exhibited better sensitivity for identifying the damage location. In addition, anomalies at the supports were eliminated.
Nowadays, one of the practical, fast and easy ways to strengthen steel elements is the use of Carbon Fiber Reinforced Polymer (CFRP). Most previous research in the CFRP strengthening of steel members has carried out on straight steel members. The main difference between horizontal curved beams and straight beams under vertical load is the presence of torsional moment in the horizontal curved beams. In the other words, the horizontal curved beams are analyzed and designed for simultaneous internal forces included bending moment, torsional moment, and shear force. The horizontal curved steel beams are usually used in buildings, bridges, trusses, and others. This study explored the effect of the CFRP strengthening on the behavior of the horizontal curved square hollow section (SHS) steel beams. Four specimens were analyzed, one non-strengthened curved steel beam as a control column and three horizontal curved steel beams strengthened using CFRP sheets (under concentrated load and uniform distributed load). To analyze the horizontal curved steel beams, three dimensional (3D) modeling and nonlinear static analysis methods using ANSYS software were applied. The results indicated that application of CFRP sheets in some specific locations of the horizontal curved steel beams could increase the ultimate capacity of these beams, significantly. Also, the results indicated when the horizontal curved steel beams were under distributed load, the increase rate in the ultimate capacity was more than in the case when these beams were under concentrated load.
In this study, the flexural behaviors of one- and two-way reinforced concrete (RC) slabs strengthened with carbon-fiber-reinforced polymer (CFRP) strips under impact loads were investigated. The flexural strengthening of RC slabs under simulated static monotonic loads has been comprehensively studied. However, the flexural behavior of RC slabs strengthened with CFRP strips has not been investigated extensively, particularly those conducted numerically. Nonlinear three-dimensional finite element models were developed, executed, and verified against previous experimental results, producing satisfactory models with approximately 4% error. The models were extended to a parametric study, considering three geometric parameters: the slab rectangularity ratio, CFRP strip width, and CFRP strip configuration. Finally, the main results were used to derive a new formula for predicting the total deflection of RC slabs strengthened with CFRP strips under impact loads with an error of approximately 10%. The proposed equation reflected the slab rectangularity, CFRP strip width, equivalent slab stiffness, and dropped weight. Results indicated that the use of CFRP strips enhanced the overall impact performance, the wider the CFRP width, the better the enhancement. Moreover, the application of diagonally oriented CFRP strips diminished the cracking zone compared to straight strips. Additionally, the diagonal orientation of CFRP strips was more efficient for two-way slabs while the vertical orientation was found to be better in the case of one-way slabs.
Journal of the Korean Society for Precision Engineering
/
v.14
no.12
/
pp.143-152
/
1997
The deflection of an end mill is very important in machining process and cutting simulation because it affects directly workpiece accuracy, cutting force, and chattering. In this study, the deflection of the end mill was studied both experimentally and by using finite element analysis. And the moment of inertia of cross sections of the helical end mill is calculated for the determination of the relation between geometry of radial cross section and rigidity of the tools. Using the Bernoulli-Euler beam theory and the concept of equivalent diameter, a deflection model is established, which includes most influences from tool geomety parameters. It was found that helix angle attenuates the rigidity of the end mill by the finite element analysis. As a result, the equivalent diameter is determined by tooth number, inscribed diameter ratio, cross sectional geometry and helix angle. Because the relation betweem equivalent diameter and each factor is nonlinear, neural network is used to decide the equivalent diameter. Input patterns and desired outputs for the neural network are obtained by FEM analysis in several case of end milling operations.
Gustavo Luz Xavier da Costa;Carlos Alberto Caldeira Brant;Magno Teixeira Mota;Rodolfo Giacomim Mendes de Andrade;Eduardo de Moraes Rego Fairbairn;Pierre Rossi
Computers and Concrete
/
v.31
no.2
/
pp.151-161
/
2023
This paper presents an investigation of variables that cause spurious cracking in numerical modeling of concrete fracture. Spurious cracks appear due to the approximate nature of numerical modeling. They overestimate the dissipated energy, leading to divergent results with mesh refinement. This paper is limited to quasi-static loading regime, homogeneous models, cracking as the only nonlinear mode of deformation and cracking only due to tensile loading. Under these conditions, some variables that can be related to spurious cracking are: mesh alignment, ductility, crack band width, structure size, mesh refinement and load increment size. Case studies illustrate the effect of each variable and convergence analyses demonstrate that, after all, load-increment size is the most important variable. Theoretically, a sufficiently small load increment is able to eliminate or at least alleviate the detrimental influence of the other variables. Such load-increment size might be prohibitively small, rendering the simulation unfeasible. Hence, this paper proposes two alternatives. First, it is proposed an algorithm that automatically find such small load increment size automatically, which not necessarily avoid large computations. Then, it is proposed a double simulation technique, in which the crack is forced to propagate through the localization zone.
Mohammad H. Habashizadeh;Nima Talebian;Dane Miller;Martin Skitmore;Hassan Karampour
Steel and Composite Structures
/
v.49
no.1
/
pp.47-64
/
2023
Due to their efficient use of materials, hybrid reinforced concrete-steel (RCS) systems provide more practical and economic advantages than traditional steel and concrete moment frames. This study evaluated the seismic design factors and response modification factor 'R' of RCS composite moment frames composed of reinforced concrete (RC) columns and steel (S) beams. The current International Building Code (IBC) and ASCE/SEI 7-05 classify RCS systems as special moment frames and provide an R factor of 8 for these systems. In this study, seismic design parameters were initially quantified for this structural system using an R factor of 8 based on the global methodology provided in FEMA P695. For analyses, multi-story (3, 5, 10, and 15) and multi-span (3 and 5) archetypes were used to conduct nonlinear static pushover analysis and incremental dynamic analysis (IDA) under near-field and far-field ground motions. The analyses were performed using the OpenSees software. The procedure was reiterated with a larger R factor of 9. Results of the performance evaluation of the investigated archetypes demonstrated that an R factor of 9 achieved the safety margin against collapse outlined by FEMA P695 and can be used for the design of RCS systems.
Steel shear walls are used to strengthen steel and concrete structures. One such system is Partial Attached Steel Shear Walls (PASSW), which are only connected to frame beams. This system offers both structural and architectural advantages. This study first calibrated the numerical model of RC frames with and without PASSW using an experimental sample. The seismic performance of the RC frame was evaluated by 30 non-linear static analyses, which considered stiffness, ductility, lateral strength, and energy dissipation, to investigate the effect of PASSW width and column axial load. Based on numerical results and a curve fitting technique, a lateral stiffness equation was developed for frames equipped with PASSW. The effect of the shear wall location on the concrete frame was evaluated through eight analyses. Nonlinear dynamic analysis was performed to investigate the effect of the shear wall on maximum frame displacement using three earthquake records. The results revealed that if PASSW is designed with appropriate stiffness, it can increase the energy dissipation and ductility of the frame by 2 and 1.2 times, respectively. The stiffness and strength of the frame are greatly influenced by PASSW, while axial force has the most significant negative impact on energy dissipation. Furthermore, the location of PASSW does not affect the frame's behavior, and it is possible to have large openings in the frame bay.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.