• Title/Summary/Keyword: static nonlinear

Search Result 1,082, Processing Time 0.024 seconds

Design of a Robust STATCOM Supplementary Controller to Suppress the SSR in the Series-compensated System (직렬 보상 선로에서의 SSR 억제를 위한 강인한 STATCOM 보조 제어기의 설계)

  • Seo, Jang-Cheol;Mun, Seung-Il;Park, Jong-Geun
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.3
    • /
    • pp.136-141
    • /
    • 2000
  • This paper presents the design of an H$\infty$ based robust Static Synchronous Compensator (STATCOM) supplementary controller to suppress the subsynchronous resonance (SSR) in the series-compensated system. The IEEE second benchmark, System-l model is employed for this study. In order to design the effective controller, the modal controllability and observability indices to the oscillation modes are considered. Comprehensive time domain simulations using a nonlinear system model that the proposed STATCOM supplementary controller can suppress the SSR efficiently in spite of the variations of power system operating conditions.

  • PDF

Control of Servo System with Fuzzy Observer (Fuzzy Observer를 이용한 서보 시스템의 제어)

  • Ryu, Je-Young;Park, Eik-Dong;Huh, Uk-Youl;Lee, Je-Hi
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2461-2463
    • /
    • 2000
  • This paper presents a scheme for designing a fuzzy observer for servo control system with nonlinear element, i.e., backlash. It is found that backlash occurs when the feed direction is reversed. Due to the imperfect transient response of the driving mechanism, not only the static backlash error but also the dynamic backlash error is generated on the contouring profile. And also, we utilized two inertia modeling in order to deals with coupled system accurately. The overall control system consists of two parts - a servo controller and an Fuzzy obsever. It is a Takagi-sugeno type fuzzy model whose consequent part is of the state space form is obtained. A simulation is carried out to demonstrate the effectiveness of the proposed scheme.

  • PDF

Seismic Performance Evaluation of Buildings with WUF-B Connections Considering Connection Fractures (WUF-B 접합부의 파단을 고려한 건물의 내진성능 평가)

  • 권건업;한상환
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.473-478
    • /
    • 2003
  • The purpose of this study is to model the seismic behavior of Welded Unreinforced Flange and Bolted (WUF-B) connections with post-Northridge details and evaluate the system performance of the builidings with WUF-B connections. For this purpose, based on test results, mathematical model of the connections were developed and compared with test results. This connection model take into account both panel zone deformation and connection fractures. Then, SAC Phase II 3 and 9-story buildings were modeled using the connection model developed in this study. From nonlinear static pushover analysis of the buildings, maximum strength, maximum roof drift, and so forth are investigated for the buildings with post-Northridge details. Analysis results were compared with those of buildings with pre-Northridge details and ductile connections with no fractures.

  • PDF

Elasto-viscoplastic Dynamic Analysis of Subterranean Storage Cavern for Petroleum Reserve (석유비축을 위한 지하저장공동의 탄.점소성 동적해석)

  • 진지섭;김수석
    • Computational Structural Engineering
    • /
    • v.2 no.2
    • /
    • pp.53-62
    • /
    • 1989
  • In recent times, the subterranean caverns for storing crude oils and oil products are increasingly needed. The elasto-VIScoplastic DYNamic finite element analysis program(VISDYN) has been developed in order to investigate dynamic responses of the storage cavity. And validity of the program is studied through a numerical example. Mohr-Coulomb yield criterion is adopted and associated flow rule is assumed. Geometrically nonlinear behaviour is taken into account using a total Lagrangian formulation. In dynamic deformation reponses, the difference between the steady state displacements and the unsteady state ones by the static analysis can be neglected.

  • PDF

A numerical approach for simulating the behaviour of timber shear walls

  • Loo, Wei Yuen;Quenneville, Pierre;Chouw, Nawawi
    • Structural Engineering and Mechanics
    • /
    • v.42 no.3
    • /
    • pp.383-407
    • /
    • 2012
  • A numerical approach to simulate the behaviour of timber shear walls under both static and dynamic loading is proposed. Because the behaviour of timber shear walls hinges on the behaviour of the nail connections, the force-displacement behaviour of sheathing-to-framing nail connections are first determined and then used to define the hysteretic properties of finite elements representing these connections. The model nails are subsequently implemented into model walls. The model walls are verified using experimental results for both monotonic and cyclic loading. It is demonstrated that the complex hysteretic behaviour of timber shear walls can be reasonably represented using model shear walls in which nonlinear material failure is concentrated only at the sheathing-to-framing nail connections.

Nonlinear dynamic behavior of Pamukcay Earthfill Dam

  • Terzi, Niyazi U.;Selcuk, Murat E.
    • Geomechanics and Engineering
    • /
    • v.9 no.1
    • /
    • pp.83-100
    • /
    • 2015
  • Water and energy supplies are the key factors affecting the economic development and environmental improvement of Turkey. Given their important role and the fact that a large part of Turkey is in seismically active zones dams should be accurately analyzed since failure could have a serious impact on the local population environment and on a wider level could affect the economy. In this paper, a procedure is proposed for the static, slope stability, seepage and dynamic analysis of an earth dam and the Pamukcay embankment dam. The acceleration time history and maximum horizontal peak ground accelerations of the $Bing\ddot{o}l$ (2003) earthquake data was used based on Maximum Design Earthquake (MDE) data. Numerical analysis showed that, the Pamukcay dam is likely to experience moderate deformations during the design earthquake but will remain stable after the earthquake is applied. The result also indicated that, non-linear analysis capable of capturing dominant non-linear mechanism can be used to assess the stability of embankment dams.

Effect of brick infill panel on the seismic safety of reinforced concrete frames under progressive collapse

  • Tavakoli, Hamidreza;Akbarpoor, Soodeh
    • Computers and Concrete
    • /
    • v.13 no.6
    • /
    • pp.749-764
    • /
    • 2014
  • Structural safety has always been a key preoccupation for engineers responsible for the design of civil engineering projects. One of the mechanisms of structural failure, which has gathered increasing attention over the past few decades, is referred to as 'progressive collapse' which happens when one or several structural members suddenly fail, whatever the cause (accident, attack, seismic loading(.Any weakness in design or construction of structural elements can induce the progressive collapse in structures, during seismic loading. Masonry infill panels have significant influence on structure response against the lateral load. Therefore in this paper, seismic performance and shear strength of R.C frames with brick infill panel under various lateral loading patterns are investigated. This evaluation is performed by nonlinear static analysis. The results provided important information for additional design guidance on seismic safety of RC frames with brick infill panel under progressive collapse.

Effect of rapid screening parameters on seismic performance of RC buildings

  • Ozmen, Hayri B.;Inel, Mehmet
    • Structural Engineering and Mechanics
    • /
    • v.62 no.4
    • /
    • pp.391-399
    • /
    • 2017
  • This study investigates the effects of soft story, short columns, heavy overhangs, pounding, and construction and workmanship quality parameters on seismic response of reinforced concrete buildings through nonlinear static and dynamic procedures. The accounted parameters are selected for their common use in rapid screening of RC buildings. The 4- and 7-story buildings designed according to pre-modern codes are used to reflect majority of the existing building stock. The relative penalty scores are employed in this study to evaluate relative importance of certain irregularities in the existing rapid seismic assessment procedures. Comparison of relative scores for the irregularities considered in this study show that the overall trend is similar. The relatively small differences may be accounted for regional construction practices. It is concluded that initial-phase seismic assessment procedures based on architectural features yield in somewhat similar results independent of their bases. However, the differences in the scores emphasize the proper selection of the method based on the regional structure characteristics.

Fatigue Analysis of Spot Welded Joints in Suspension Mounting Part

  • Yum, Youung-Jin;Chu, Young-Woo;Chu, Seok-Jae;Kim, Jung-Han;Hee You
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.8
    • /
    • pp.1113-1119
    • /
    • 2003
  • Experimental and numerical analyses were performed to characterize the fatigue behavior of spot welded joints in suspension mounting of a passenger car body. Static and fatigue tests were carried out for the tensile-shear and cross-tension specimens. S-N curve and fatigue strengths were obtained from the fatigue test of various specimens. Nonlinear finite element analysis showed that fatigue behavior of spot welded joints could be well estimated in terms of Von Mises stress at the nugget edge. Fatigue behavior of spot welded joint was represented by Von Mises stress better than the fatigue load.

Structural Optimization of Truss with Non-Linear Response Using Equivalent Linear Loads (선형등가하중을 이용한 비선형 거동을 하는 트러스 구조물의 최적설계)

  • Park, Ki-Jong;Park, Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.4
    • /
    • pp.467-474
    • /
    • 2004
  • A numerical method and algorithms is proposed to perform optimization of non-linear response structures. An analytical and numerical method based finite element method is also proposed for the transformation of non-linear response into linear response. Loads transformed from this method are defined as the equivalent linear loads. With the loads and the transformed response, linear static optimization is performed for nonlinear response structure with geometric and/or material non-linearity. The results of the optimization are compared with them of typical non-linear response optimization using finite difference method. The proposed method is very efficient and derives good solution.