• Title/Summary/Keyword: static nonlinear

Search Result 1,082, Processing Time 0.027 seconds

Computational Algorithm for Nonlinear Large-scale/Multibody Structural Analysis Based on Co-rotational Formulation with FETI-local Method (Co-rotational 비선형 정식화 및 FETI-local 기법을 결합한 비선형 대용량/다물체 구조 해석 알고리듬 개발)

  • Cho, Haeseong;Joo, HyunShig;Lee, Younghun;Gwak, Min-cheol;Shin, SangJoon;Yoh, Jack J.
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.9
    • /
    • pp.775-780
    • /
    • 2016
  • In this paper, a computational algorithm of an improved and versatile structural analysis applicable for large-size flexible nonlinear structures is developed. In more detail, nonlinear finite element based on the co-rotational (CR) framework is developed. Then, a finite element tearing and interconnecting method using local Lagrange multipliers (FETI-local) is combined with the nonlinear CR finite element. The resulting computational algorithm is presented and applied for nonlinear static analyses, i.e., cantilevered beam and multibody structure. Finally, the proposed analysis is evaluated with regard to its parallel computation performance, and it is compared with those obtained by serial computation using the sparse matrix linear solver, PARDISO.

A multi-objective optimization framework for optimally designing steel moment frame structures under multiple seismic excitations

  • Ghasemof, Ali;Mirtaheri, Masoud;Mohammadi, Reza Karami;Salkhordeh, Mojtaba
    • Earthquakes and Structures
    • /
    • v.23 no.1
    • /
    • pp.35-57
    • /
    • 2022
  • This article presents a computationally efficient framework for multi-objective seismic design optimization of steel moment-resisting frame (MRF) structures based on the nonlinear dynamic analysis procedure. This framework employs the uniform damage distribution philosophy to minimize the weight (initial cost) of the structure at different levels of damage. The preliminary framework was recently proposed by the authors based on the single excitation and the nonlinear static (pushover) analysis procedure, in which the effects of record-to-record variability as well as higher-order vibration modes were neglected. The present study investigates the reliability of the previous framework by extending the proposed algorithm using the nonlinear dynamic design procedure (optimization under multiple ground motions). Three benchmark structures, including 4-, 8-, and 12-story steel MRFs, representing the behavior of low-, mid-, and high-rise buildings, are utilized to evaluate the proposed framework. The total weight of the structure and the maximum inter-story drift ratio (IDRmax) resulting from the average response of the structure to a set of seven ground motion records are considered as two conflicting objectives for the optimization problem and are simultaneously minimized. The results of this study indicate that the optimization under several ground motions leads to almost similar outcomes in terms of optimization objectives to those are obtained from optimization under pushover analysis. However, investigation of optimal designs under a suite of 22 earthquake records reveals that the damage distribution in buildings designed by the nonlinear dynamic-based procedure is closer to the uniform distribution (desired target during the optimization process) compared to those designed according to the pushover procedure.

A Study on Shear-Fatigue Behavior of Reinforced Concrete Beams (철근(鐵筋)콘크리트보의 전단피로거동(剪斷疲勞擧動)에 관(關)한 연구(硏究))

  • Chang, Dong Il;Kwak, Kae Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.1
    • /
    • pp.173-185
    • /
    • 1988
  • This study is intended to investigate the shear fatigue behaviour of reinforced concrete beams based on a series of experiments, and verify the test results in comparison with the analysis result obtained by using a nonlinear finite element method. The experiments are divided into the tests under the static loading and the test under the dynamic fatigue loading. In order to investigate the shear failure behaviour under static loadings, four specimens for three different cases were made and tested. The behaviour of stirrups with the static stress and strain variations were observed based on the results of these tests. In the fatigue fracture tests, eleven specimens for four different cases were made and tested. Various observations on mid-span deflection of test beams and tensile strains of reinforcing steels as well as stirrups were made against various fatigue loadings. It may be concluded that the shear fatigue strengths of R.C. specimens at one million cycles turn out to be approximately 65 percent of the static ultimate shear strength.

  • PDF

Preliminary Study on Optimization of the Tube Hydroforming Process Using the Equivalent Static Loads (등가정하중을 이용한 튜브 하이드로포밍 공정 최적설계에 관한 기초연구)

  • Jang, Hwan-Hak;Park, Gyung-Jin;Kim, Tai-Kyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.3
    • /
    • pp.259-268
    • /
    • 2015
  • An optimization method for the tube hydroforming process is developed using the equivalent static loads method for non linear static response structural optimization (ESLSO). The aims of the tube hydroforming optimization are to determine the axial forces (axial feedings) and the internal pressures, and to obtain the desired shape without failures after hydroforming analysis. Therefore, the magnitude of the forces should be design variables in the optimization process. Also, some tube hydroforming optimization needs to consider the result of the thickness in nonlinear dynamic analysis as responses. However, the external forces are considered as constants and the thickness is not a response in the linear response optimization process of the original ESLSO. Thus, a new ESLSO process is proposed to overcome the difficulties and some examples are solved to validate the proposed method.

DYNAMIC ANALYSIS AND DESIGN CALCULATION METHODS FOR POWERTRAIN MOUNTING SYSTEMS

  • Shangguan, W.B.;Zhao, Y.
    • International Journal of Automotive Technology
    • /
    • v.8 no.6
    • /
    • pp.731-744
    • /
    • 2007
  • A method for dynamic analysis and design calculation of a Powertrain Mounting System(PMS) including Hydraulic Engine Mounts(HEM) is developed with the aim of controlling powertrain motion and reducing low-frequency vibration in pitch and bounce modes. Here the pitch mode of the powertrain is defined as the mode rotating around the crankshaft of an engine for a transversely mounted powertrain. The powertrain is modeled as a rigid body connected to rigid ground by rubber mounts and/or HEMs. A mount is simplified as a three-dimensional spring with damping elements in its Local Coordinate System(LCS). The relation between force and displacement of each mount in its LCS is usually nonlinear and is simplified as piecewise linear in five ranges in this paper. An equation for estimating displacements of the powertrain center of gravity(C.G.) under static or quasi-static load is developed using Newton's second law, and an iterative algorithm is presented to calculate the displacements. Also an equation for analyzing the dynamic response of the powertrain under ground and engine shake excitations is derived using Newton's second law. Formulae for calculating reaction forces and displacements at each mount are presented. A generic PMS with four rubber mounts or two rubber mounts and two HEMs are used to validate the dynamic analysis and design calculation methods. Calculated displacements of the powertrain C.G. under static or quasi-static loads show that a powertrain motion can meet the displacement limits by properly selecting the stiffness and coordinates of the tuning points of each mount in its LCS using the calculation methods developed in this paper. Simulation results of the dynamic responses of a powertrain C.G. and the reaction forces at mounts demonstrate that resonance peaks can be reduced effectively with HEMs designed on the basis of the proposed methods.

A Numerical Study on the Static Strength of Tubular X-Joints With an Internal Ring Stiffener (환보강 X형 관이음부의 정적강도에 관한 수치적 연구)

  • Ryu Yeon-Sun;Cho Hyun-Man
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.3
    • /
    • pp.265-275
    • /
    • 2005
  • The objective of this paper is to numerically assess the behavior of tubular X-joints with an internal ing stiffener, and to evaluate the reinforcement effect of a ring stiffener, and to establish the strength formulae. Nonlinear finite element analysis is used to compute the static strength of axially loaded tubular joints. Numerical and experimental results are in good agreement for tubular X-joints. The chord lengths of simple and ring-stiffened X-joints are suggested to reduce chord end effect. And, internal ring stiffener is found to be efficient In improving static strength of tubular X-joints. Maximum strength ratios are calculated as $1.5\sim3.5$. Regression analyses are performed considering practical size of ring stiffener and strength estimation formulae for tubular X-joints with an internal ring stiffener are proposed.

Fast Dynamic Reliability Estimation Approach of Seismically Excited SDOF Structure (지진하중을 받는 단자유도 구조물의 신속한 동적 신뢰성 추정 방법)

  • Lee, Do-Geun;Ok, Seung-Yong
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.5
    • /
    • pp.39-48
    • /
    • 2020
  • This study proposes a fast estimation method of dynamic reliability indices or failure probability for SDOF structure subjected to earthquake excitations. The proposed estimation method attempts to derive coefficient function for correcting dynamic effects from static reliability analysis in order to estimate the dynamic reliability analysis results. For this purpose, a total of 60 cases of structures with various characteristics of natural frequency and damping ratio under various allowable limits were taken into account, and various types of approximation coefficient functions were considered as potential candidate models for dynamic effect correction. Each reliability index was computed by directly performing static and dynamic reliability analyses for the given 60 cases, and nonlinear curve fittings for potential candidate models were performed from the computed reliability index data. Then, the optimal estimation model was determined by evaluating the accuracy of the dynamic reliability analysis results estimated from each candidate model. Additional static and dynamic reliability analyses were performed for new models with different characteristics of natural frequency, damping ratio and allowable limit. From these results, the accuracy and numerical efficiency of the optimal estimation model were compared with the dynamic reliability analysis results. As a result, it was confirmed that the proposed model can be a very efficient tool of the dynamic reliability estimation for seismically excited SDOF structure since it can provide very fast and accurate reliability analysis results.

The multi-axial strength performance of composited structural B-C-W members subjected to shear forces

  • Zhu, Limeng;Zhang, Chunwei;Guan, Xiaoming;Uy, Brian;Sun, Li;Wang, Baolin
    • Steel and Composite Structures
    • /
    • v.27 no.1
    • /
    • pp.75-87
    • /
    • 2018
  • This paper presents a new method to compute the shear strength of composited structural B-C-W members. These B-C-W members, defined as concrete-filled steel box beams, columns and shear walls, consist of a slender rectangular steel plate box filled with concrete and inserted steel plates connecting the two long-side steel plates. These structural elements are intended to be used in structural members of super-tall buildings and nuclear safety-related structures. The concrete confined by the steel plate acts to be in a multi-axial stressed state: therefore, its shear strength was calculated on the basis of a concrete's failure criterion model. The shear strength of the steel plates on the long sides of the structural element was computed using the von Mises plastic strength theory without taking into account the buckling of the steel plate. The spacing and strength of the inserted plates to induce plate yielding before buckling was determined using elastic plate theory. Therefore, a predictive method to compute the shear strength of composited structural B-C-W members without considering the shear span ratio was obtained. A coefficient considering the influence of the shear span ratio was introduced into the formula to compute the anti-lateral bearing capacity of composited structural B-C-W members. Comparisons were made between the numerical results and the test results along with this method to predict the anti-lateral bearing capacity of concrete-filled steel box walls. Nonlinear static analysis of concrete-filled steel box walls was also conducted by using ABAQUS and the results agreed well with the experimental data.

Equations for Estimating Energy Dissipation Capacity of Flexure-Dominated RC Members (철근콘크리트 휨재에 대한 에너지 소산능력 산정식의 개발)

  • 엄태성;박홍근
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.989-1000
    • /
    • 2002
  • As advanced earthquake design methods using nonlinear static analysis are developed, it is required to estimate precisely the cyclic behavior of reinforced concrete members that is characterized by strength, deformability, and energy dissipation. In a recent study, a simplified method which can estimate accurately the energy dissipation capacity of flexure-dominated RC members subjected to repeated cyclic load was developed. Based on the previously developed method, in the present study, simple equations that can be used for calculating the energy dissipation capacity were derived and verified by the comparison with experimental results. Through parametric study using the proposed equations, effects of axial load, reinforcement ratio, rebar arrangement, md ductility on the dissipated energy were investigated. The proposed equations can accurately estimate the energy dissipation capacity compared with the existing empirical equations, and therefore they will be useful for the nonlinear static analysis/design methods.

Dynamic Characteristics Simulation for a Simplex Swirl Injector (스월 인젝터의 동특성에 대한 수치해석 연구)

  • 박홍복
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.9
    • /
    • pp.67-75
    • /
    • 2006
  • A fully nonlinear model accounting for swirling effect has been applied in analyzing the dynamic response for a classical swirl injector. The current work applied highly accurate Boundary Element Methods (BEMs) in assessing its static and dynamic characteristics. On the basis of moving surface treatment method and surface instability study, which are obtained from the previous static characteristics analysis in pressure-swirl injectors, this work was expanded for analyzing the dynamics of a classical swirl injector. The dynamic response through injector components for disturbed inflow condition was investigated. The modified code was validated from comparison with the theoretical result for a typical swirl injector. Clearly the simulated result shows the interesting characteristics of swirl injectors to provide either amplification or damping of the input disturbance through each component. These results give promise in applying the current model to nonlinear dynamic characteristics of swirl injectors.