• Title/Summary/Keyword: static method

Search Result 4,690, Processing Time 0.029 seconds

Strength Demand Calculation for Retrofitting Unreinforced Masonry Buildings Based on the Displacement Coefficient Method and the Preliminary Seismic Evaluation Procedure (변위계수법 및 약산식 내진성능평가에 기초한 비보강 조적조 건물의 내진보강 요구강도 산정)

  • Seol, Yun Jeong;Park, Ji-Hun;Kwak, Byeong Hun;Kim, Dae Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.26 no.1
    • /
    • pp.31-38
    • /
    • 2022
  • Based on the nonlinear static analysis and the approximate seismic evaluation method adopted in "Guidelines for seismic performance evaluation for existing buildings, two methods to calculate strength demand for retrofitting individual structural walls in unreinforced masonry buildings are proposed." The displacement coefficient method to determine displacement demand from nonlinear static analysis results is used for the inverse calculation of overall strength demand required to reduce the displacement demand to a target value meeting the performance objective of the unreinforced masonry building to retrofit. A preliminary seismic evaluation method to screen out vulnerable buildings, of which detailed evaluation is necessary, is utilized to calculate overall strength demand without structural analysis based on the difference between the seismic demand and capacity. A system modification factor is introduced to the preliminary seismic evaluation method to reduce the strength demand considering inelastic deformation. The overall strength demand is distributed to the structural walls to retrofit based on the wall stiffness, including the remaining walls or otherwise. Four detached residential houses are modeled and analyzed using the nonlinear static and preliminary evaluation procedures to examine the proposed method.

Structural Optimization for Non-Linear Behavior Using Equivalent Static Loads by Proportional Transformation of Loads (비례하중변환법의 등가정하중을 이용한 비선형 거동을 하는 구조물의 최적설계)

  • Park Ki-Jong;Kwon Yong-Deok;Song Kee-Nam;Park Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.1 s.244
    • /
    • pp.66-75
    • /
    • 2006
  • Nonlinear response structural optimization using equivalent static loads (NROESL) has been proposed. Nonlinear response optimization is solved by sequential linear response optimization with equivalent static loads which are generated from the nonlinear responses and linear stiffness matrix. The linear stiffness matrix should be obtained in NROESL, and this process can be fairly difficult for some applications. Proportional transformation of loads (PTL) is proposed to overcome the difficulties. Equivalent static loads are obtained by PTL. It is the same as NROESL except for the process of calculating equivalent static loads. PTL is developed for large-scale probems. First, linear and nonlinear responses are evaluated from linear and nonlinear analyses, respectively. At a DOF of the finite element method, the ratio of the two responses is calculated and an equivalent static load is made by multiplying the ratio and the loads for linear analysis. Therefore, the mumber of the equivalent static loads is as many as that of DOF's and an equivalent static load is used with the reponse for the corresponding DOF in the optimization process. All the equivalent static loads are used as multiple loading conditions during linear response optimization. The process iterates until it converges. Examples are solved by using the proposed method and the results are compared with conventional methods.

A method for analyzing the buckling strength of truss structures

  • Pan, Yi;Gu, Renqi;Zhang, Ming;Parke, Gerry;Behnejad, Alireza
    • Earthquakes and Structures
    • /
    • v.16 no.2
    • /
    • pp.129-139
    • /
    • 2019
  • This paper develops a new method for estimating the elastic-plastic buckling strength of the truss structures under the static and seismic loads. Firstly, a new method for estimating the buckling strength of the truss structures was derived based on the buckling strength of the representative member considering the parameters, such as the structure configurations, boundary conditions, etc. Secondly, the new method was verified through the buckling strength estimation and the finite element method (FEM) analysis of the single member models, portal frame models and simple truss models. Finally, the method was applied to evaluate the buckling strength of a simple truss structure under seismic load, and the failure loads between the proposed method and the FEM were analyzed reasonably. The results show that the new method is feasible and reliable for structure engineers to estimate the buckling strengths of the truss structures under the static loads and seismic loads.

A Parameter Study for Static and Dynamic Denting

  • Jung, Dong-Won;Worswick, M.J.
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.11
    • /
    • pp.2009-2020
    • /
    • 2004
  • A parametric study of the factors controlling static and dynamic denting, as well as local stiffness, has been made on simplified panels of different sizes, curvatures, thicknesses and strengths. Analyses have been performed using the finite element method to predict dent resistance and panel stiffness. A parametric approach is used with finite element models of simplified panels. Two sizes of panels with square plan dimensions and a wide range of curvatures are analysed for several combinations of material thickness and strength, all representative of auto-motive closure panels. Analysis was performed using the implicit finite element code, LS-NIKE, and the explicit dynamic code, LS-DYNA for the static and dynamic cases, respectively. Panel dent resistance and stiffness behaviour are shown to be complex phenomena and strongly interrelated. Factors favouring improved dent resistance include increased yield strength and panel thickness. Panel stiffness also increases with thickness and with higher curvatures but decreases with size and very low curvatures. Conditions for best dynamic and static dent performance are shown to be inherently in conflict ; that is, panels with low stiffness tend to perform well under impact loading but demonstrate inferior static dent performance. Stiffer panels are prone to larger dynamic dents due to higher contact forces but exhibit good static performance through increased resistance to oil canning.

A Hybrid Static Optimization for Estimating Muscle Forces during Heel-rise Movements (발뒤꿈치들기 시 근력 추정을 위한 혼합 정적 최적화)

  • Son, Jong-Sang;Sohn, Ryang-Hee;Kim, Young-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.3
    • /
    • pp.129-136
    • /
    • 2009
  • The estimation of muscle force is important to understand the roles of the muscles. The static optimization method can be used to figure out the individual muscle forces. However, muscle forces during the movement including muscle co-contraction cannot be considered by the static optimization. In this study, a hybrid static optimization method was introduced to find the well-matched muscle forces with EMG signals under muscle co-contraction conditions. To validate the developed algorithm, the 3D motion analysis and its corresponding inverse dynamics using the musculoskeletal modeling software (SIMM) were performed on heel-rise movements. Results showed that the developed algorithm could estimate the acceptable muscle forces during heel-rise movement. These results imply that a hybrid numerical approach is very useful to obtain the reasonable muscle forces under muscle co-contraction conditions.

A Study on Static and Dynamic Design Criteria of Piping System in Petrochemical Plant Design (석유화학 플랜트 설계 시 배관계의 정적, 동적 설계기준에 대한 연구)

  • 민선규;최명진
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.275-279
    • /
    • 2001
  • There are two kinds of the design criteria of piping system in petrochemical plant design. The first is on static state evaluation by thermal growth and the other is on dynamic evaluation by piping vibration. In the static design evaluation, the ASME B31.3 code defines 7000 cycles of fatigue life in operating the piping system with design condition. However, the dynamic design evaluation in comparative with small displacements of high frequencies to static condition has not established clearly the method, yet. So, this study purposes to present the trial of a proposal of dynamic design criterion on the basis of static design method.

  • PDF

Study on Flight Test Practice of the Small Civil Airplane Development for Pitot-Static System's Error Identification (소형 항공기 개발 동정압계통 오차 확인 비행시험 사례)

  • Kim, Chanjo;Seo, Jihan;Lee, Wonjoong
    • Journal of Aerospace System Engineering
    • /
    • v.7 no.3
    • /
    • pp.33-38
    • /
    • 2013
  • The air data measured from the static pressure, the dynamic pressure and etc. of an airplane is used for calculation of many flight parameters(altitude and airspeed and so on) and these values applied to flight safety and navigation flight. The pitot-static system of the development airplane is calibrated by finding of pitot-static system's error using tower fly-by, trailing cone method and etc. This paper is describing for the introduction of the trailing cone method and major items for test planning, preparation, operation and results for air data calibration flight test performed, considering efficiency and safety during KC-100 development project.

The Stability Evaluation for Pseudo-Static Analysis of Composite Dam (복합댐의 등가정적해석에 의한 안정성 평가)

  • 오병현;임정열;이종욱
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.09a
    • /
    • pp.205-212
    • /
    • 2002
  • It was performed that the stability evaluation using pseudo-static method and modified pseudo-static method for rockfill and rockfill-concrete section of composite dam. As a results of pseudo-static and modified pseudo-static analysis using seismic coefficient 0.154g, the maximum displacement at dam crest was occurred about 14~18cm on rockfill section and about 5~9cm on rockfill-concrete section, respectively. Also, that the factor of safety of down slope was more than 1.0~1.5. the rockfill and rockfill-concrete section of composite dam did not show any stability problems for 0.154g. Further research is still necessary in seismic safety of composite dam.

  • PDF

Structural Optimization for Non-Linear Behavior Using Equivalent Static Loads (I) (선형 등가정하중을 이용한 비선형 거동 구조물의 최적설계 (I) - 알고리듬 -)

  • Park Ki-Jong;Park Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.8 s.239
    • /
    • pp.1051-1060
    • /
    • 2005
  • Nonlinear Response Optimization using Equivalent Static Loads (NROESL) method/algorithm is proposed to perform optimization of non-linear response structures. The conventional method spends most of the total design time on nonlinear analysis. The NROESL algorithm makes the equivalent static load cases for each response and repeatedly performs linear response optimization and uses them as multiple loading conditions. The equivalent static loads are defined as the loads in the linear analysis, which generates the same response field as those in non-linear analysis. The algorithm is validated for the convergence and the optimality. The proposed algorithm is applied to a simple mathematical problem to verify the convergence and the optimality.