• 제목/요약/키워드: static force coefficients

검색결과 55건 처리시간 0.026초

Static behavior of nonlocal Euler-Bernoulli beam model embedded in an elastic medium using mixed finite element formulation

  • Nguyen, Tuan Ngoc;Kim, Nam-Il;Lee, Jaehong
    • Structural Engineering and Mechanics
    • /
    • 제63권2호
    • /
    • pp.137-146
    • /
    • 2017
  • The size-dependent behavior of single walled carbon nanotubes (SWCNT) embedded in the elastic medium and subjected to the initial axial force is investigated using the mixed finite element method. The SWCNT is assumed to be Euler-Bernoulli beam incorporating nonlocal theory developed by Eringen. The mixed finite element model shows its great advantage of dealing with nonlocal behavior of SWCNT subjected to a concentrated load owing to the existence of two coefficients ${\alpha}_1$ and ${\alpha}_2$. This is the first numerical approach to deal with a puzzling fact of nonlocal theory with concentrated load. Numerical examples are performed to show the accuracy and efficiency of the present method. In addition, parametric study is carefully carried out to point out the influences of nonlocal effect, the elastic medium, and the initial axial force on the behavior of the carbon nanotubes.

유한유쇼법을 이용한 미소절삭기구의 절삭인자 규명에 관한 연구 (A study on the effect of cutting parameters of micro metal cutting mechanism using finite element method)

  • 황준;남궁석
    • 한국정밀공학회지
    • /
    • 제10권4호
    • /
    • pp.206-215
    • /
    • 1993
  • The finite element method is applied to analyze the mechanism of metal cutting, especially micro metal cutting. This paper introduces some effects, such as constitutive deformation laws of workpiece material, friction of tool-chip contact interfaces, tool rake angle and also simulate the cutting process, chip formation and geometry, tool-chip contact, reaction force of tool. Under the usual plane strain assumption, quasi-static analysis were performed with variation of tool-chip interface friction coefficients and tool rake angles. In this analysis, cutting speed, cutting depth set to 8m/sec, 0.02mm, respectively. Some cutting parameters are affected to cutting force, plastic deformation of chip, shear plane angle, chip thickness and tool-chip contact length and reaction forces on tool. Several aspects of the metal cutting process predicted by the finite element analysis provide information about tool shape design and optimal cutting conditions.

  • PDF

강성계수의 전달을 이용한 정적 감도해석 알고리즘에 관한 연구 (A Study on the Static Sensitivity Analysis Algorithm Using the Transfer of Stiffness Coefficient)

  • 최명수
    • 동력기계공학회지
    • /
    • 제5권4호
    • /
    • pp.82-89
    • /
    • 2001
  • To design a structural or a mechanical system with the best performance, the main procedure of a typical design usually consists of repeated modifications of design parameters and the investigation of the system response for each set of these parameters. But this procedure requires much time, effort and experience. Sensitivity analysis can provide systematic information for improving performance of a system. The author has studied on the development of the structural analysis algorithm and suggested recently the transfer stiffness coefficient method(TSCM). This method is very suitable algorithm to a personal computer because the concept of the TSCM is based on the transfer of the nodal stiffness coefficients which are related to force and displacement vectors at each node. In this paper, a new sensitivity analysis algorithm using the concept of the TSCM is formulated for the computation of state variable sensitivity in static problems. The trust of the proposed algorithm is confirmed through the comparison with the computation results using existent sensitivity analysis algorithm and reanalysis for computation models.

  • PDF

왕겨의 물리적 성질 (Physical Properties of Rice Husk)

  • 박승제;김명호;신형명
    • Journal of Biosystems Engineering
    • /
    • 제30권4호
    • /
    • pp.229-234
    • /
    • 2005
  • Kinetic friction coefficient, bulk density, dynamic and static angle of repose, and terminal velocity of rice husk at the moisture range 7 to $23\%$ w.b. were determined. It could lead to better design and operation of the processing machinery and handling facilities. Friction coefficient was determined from the horizontal traction force measured by pulling the container holding a mass of rice husk on various plate materials. Dynamic angle of repose was calculated from the photos of bulk samples piled by gravity flow on a circular platform. Static angle of repose was determined by measuring the side angle of the bulk material which was left in a cylindrical container after natural discharge of the bulk sample through a circular hole in the bottom plate. Kinetic friction coefficients of rice husk were in the range of $0.254\~0.410,\;0.205\~0.520,\;0.229\~0.400,\;and 0.133\~0.420$ on PVC, mild steel, galvanized steel, and stainless steel, respectively. Bulk density, dynamic and static angle of repose, and terminal velocity were in the range of $91.7\~98.3$ $kg/m^3$, $40.2\~47.6^{\circ},\;52.8\~83.7^{\circ},$ and $1.36\~1.73$ m/s, respectively. These physical properties of rice husk increased linearly as the moisture content increased.

유한요소법을 이용한 고무 연결요소의 정-동강성 계수에 관한 연구 (Study on the Static and Dynamic Stiffness Coefficients of Rubbers Connector by Using Finite Element Method)

  • 박노길;박성태
    • 전산구조공학
    • /
    • 제8권2호
    • /
    • pp.103-113
    • /
    • 1995
  • 고무 재질로 이루어진 차량 구조물의 연결요소에 대한 등가 강성계수는 차량 시스템 동역학 특성에 매우 민감하게 영향을 주므로 이에 대한 신뢰성있는 해석이 요구된다. 본 논문에서는, 고무의 역학 모델을 정하중 하에서는 유한 변형 및 Hook 모델로 그리고 동하중 하에서는 Voigt 모델로 가정하여, 연결요소의 등가 정-동강성계수를 유한요소법으로 해석하고자 한다. 실제 차량에 사용되고 있는 동일 모양의 방진고무들을 실험 평가한 결과 강성계수값들의 분산 정도가 심함을 알 수 있었다. 유한요소 해석에 필요한 고무 재질의 물성치의 신뢰성을 높이기 위하여 제품의 특정 방향 정특성 실험 데이타로부터 역으로 재질의 물성치를 규명하였다. 그 물성치로부터 원하는 방향에서의 강성계수를 산출하여 실험치와 비교하여 효용성을 보였다.

  • PDF

복층터널에서 중간슬래브와 측압계수에 따른 세그먼트 라이닝의 거동분석 (Behavior of the Segment Lining due to the Middle Slab and the Lateral Pressure Coefficient in Duplex Tunnel)

  • 이호성;문현구
    • 터널과지하공간
    • /
    • 제26권3호
    • /
    • pp.192-200
    • /
    • 2016
  • 대심도 지하 네트워크 구축을 위한 대심도 복층터널의 계획 시 세그먼트 라이닝의 거동을 주요 구조물인 중간슬래브와 측압계수(K)에 따라 검토하였다. 연구를 위하여 세그먼트 라이닝 해석법을 검토하였고, 대심도 복층터널에 적합한 해석 모델을 결정하였다. 또한 연직하중에 대해 검토하였고, 중간슬래브 하중은 슬래브 자중인 정하중과 차량에 의한 활하중을 고려하였다. 연구결과 중간슬래브 하중 적용에 따른 단면력은 터널 하부에 주로 발생하였고 휨모멘트의 크기에 가장 큰 영향을 미쳤다. 또한 휨모멘트 작용 방향의 변화가 큰 변수로 나타났고, 중간슬래브 하중 적용에 따른 단면력의 크기는 비교적 일정하여, 단면력의 발생이 가장 작은 측압계수 1.00에서 세그먼트 라이닝에 미치는 영향이 제일 크게 나타나는 것을 알 수 있었다. 본 연구의 결과로 복층터널의 슬라브와 측압계수(K)의 영향에 의한 세그먼트 라이닝의 거동을 파악하여 합리적이고 경제적인 복층터널 구조물 설계의 방향을 제시할 수 있을 것이다.

Buckling of axially graded columns with varying power-law gradients

  • Li, X.F.;Lu, L.;Hu, Z.L.;Huang, Y.;Xiao, B.J.
    • Steel and Composite Structures
    • /
    • 제45권4호
    • /
    • pp.547-554
    • /
    • 2022
  • This paper studies the static stability of an axially graded column with the power-law gradient varying along the axial direction. For a nonhomogeneous column with one end linked to a rotational spring and loaded by a compressive force, respectively, an Euler problem is analyzed by solving a boundary value problem of an ordinary differential equation with varying coefficients. Buckling loads through the characteristic equation with the aid of the Bessel functions are exactly given. An alternative way to approximately determine buckling loads through the integral equation method is also presented. By comparing approximate buckling loads with the exact ones, the approximate solution is simple in form and enough accurate for varying power-law gradients. The influences of the gradient index and the rotational spring stiffness on the critical forces are elucidated. The critical force and mode shapes at buckling are presented in graph. The critical force given here may be used as a benchmark to check the accuracy and effectiveness of numerical solutions. The approximate solution provides a feasible approach to calculating the buckling loads and to assessing the loss of stability of columns in engineering.

실측 데이터를 이용한 공용중인 강사장교의 버페팅 응답 분석 (A Study on Buffeting Responses of a In-service Steel Cable-stayed Bridge Using Full-scale Measurements)

  • 이덕근;공민준;유동우
    • 대한토목학회논문집
    • /
    • 제36권3호
    • /
    • pp.349-359
    • /
    • 2016
  • 공용 중인 교량의 버페팅 응답을 해석적으로 평가하기 위해서는 교량 현장의 난류강도, 난류 스펙트럼, 조도계수, 거스트 계수 등 풍하중에 대한 분석이 우선되어야 하고, 해석 결과는 정적 공기력 계수, 플러터계수, 구조 감쇠비, 공기역학적 감쇠비, 고유 진동수 등 여러 변수에 의해 영향을 받는다. 본 논문에서 대상으로 한 교량은 32년째 공용 중에 있는 교량으로써 교량 주변의 지형조건은 설계 및 시공 당시에 비해 많은 변화가 발생하였으며 최근 기후 변화로 인한 풍 환경 역시 큰 변화가 있다. 이러한 이유로 대상교량에서 실측한 풍속 데이터를 분석하여 난류강도, 난류길이, 지표조도계수, 풍속 스펙트럼 등 교량 현장의 풍하중을 평가하였다. 교량 주변의 풍환경 평가 결과, 대상 교량은 해상교량임에도 불구하고 지표조도구분 II의 특성을 나타내고 있었다. 또한 실측한 구조물의 가속도, 변위 응답 데이터를 통해 대상교량의 감쇠비, 정적 공기력 계수, 고유진동수를 평가하여 계측기반 버페팅 해석 변수를 산정하였다. 계측데이터 기반의 해석 변수와 케이블강교량설계지침에 제시된 해석 변수를 적용하여 총 4가지 경우에 대한 버페팅 해석을 수행하였으며, 그 결과 10분 평균 풍속 25m/s이하에서 측정된 버페팅 응답과 계측 기반 해석 변수를 적용한 해석 응답이 가장 잘 일치함을 확인하였고, 계측 풍속과 Gumbel 확률분포를 이용하여 추정한 200년 재현기대 풍속인 45m/s에서의 버페팅 응답을 제시하였다.

Effects of Fatigue Induction on Ground Reaction Force Components, Postural Stability, and Vertical Jump Performance in Taekwondo Athletes

  • Hyun, Seung-Hyun;Kim, Young-Pyo;Ryew, Che-Cheong
    • 한국운동역학회지
    • /
    • 제26권2호
    • /
    • pp.143-151
    • /
    • 2016
  • Objective: The purpose of this study was to investigate the effect of fatigue induction on ground reaction force (GRF) components, postural stability, and vertical jump performance in Taekwondo athletes. Method: Ten Taekwondo athletes (5 men, 5 women; mean age, $22.30{\pm}2.62years$; mean height, $174.21{\pm}9.20cm$; mean body weight, $67.28{\pm}12.56kg$) participated in this study. Fatigue was induced by a short period of strenuous exercise performed on a motorized treadmill. The analyzed variables included vertical jump performance, static stability (mediolateral [ML], center of pressure [COP], anteroposterior [AP] COP, ${\Delta}COPx$, ${\Delta}COPy$, and COP area), postural stability index values (ML stability index [MLSI], AP stability index [APSI], vertical stability index [VSI], dynamic postural stability index [DPSI]), and GRF components (ML force, AP force, peak vertical force [PVF], and loading rate). To analyze the variables measured in this study, PASW version 22.0 was used to calculate the mean and standard deviation, while a paired t-test was used to evaluate the pre- versus post-fatigue results. Pearson's correlation coefficients among variables were also analyzed. The statistical significance level was set at ${\alpha}$ = .05. Results: Vertical jump performance decreased significantly after the induction of fatigue, while AP COP, ${\Delta}COPx$, COP area, APSI, VSI, and DPSI increased significantly. PVF and loading rate increased significantly after the induction of fatigue, while the postural stability variables (AP COP, ${\Delta}COPy$, COP area, APSI, VSI, DPSI) were similarly correlated with GRF components (PVF, loading rate) after fatigue was achieved (r = .600, $R^2$ = 37%). Conclusion: These results suggest that the induction of fatigue can decrease postural stability and exercise performance of Taekwondo athletes during training and competition sessions.

Seismic holding behaviors of inclined shallow plate anchor embedded in submerged coarse-grained soils

  • Zhang, Nan;Wang, Hao;Ma, Shuqi;Su, Huaizhi;Han, Shaoyang
    • Geomechanics and Engineering
    • /
    • 제28권2호
    • /
    • pp.197-207
    • /
    • 2022
  • The seismic holding behaviors of plate anchor embedded into submerged coarse-grained soils were investigated considering different anchor inclinations. The limit equilibrium method and the Pseudo-Dynamic Approach (PDA) were employed to calculate the inertia force of the soils within the failure rupture. In addition, assuming the permeability of coarse-grained soils was sufficiently large, the coefficient of hydrodynamic force applied on the inclined plate anchor is obtained through adopting the exact potential flow theory. Therefore, the seismic holding resistance was calculated as the combination of the inertia force and the hydrodynamic force within the failure rupture. The failure rupture can be developed due to the uplift loads, which was assumed to be an arc of a circle perpendicular to the anchor and inclines at (π/4 - φ/2). Then, the derived analytical solutions were evaluated by comparing the static breakout factor Nγ to the published experimental and analytical results. The influences of soil and wave properties on the plate anchor holding behavior are reported. Finally, the dynamic anchor holding coefficients Nγd, were reported to illustrate the anchor holding behaviors. Results show that the soil accelerations in x and z directions were both nonlinear. The amplifications of soil accelerations were more severe at lower normalized frequencies (ωH/V) compared to higher normalized frequencies. The coefficient of hydrodynamic force, C, of the plate anchor was found to be almost constant with anchor inclinations. Finally, the seismic anchor holding coefficient oscillated with the oscillation of the inertia force on the plate anchor.