• Title/Summary/Keyword: static electricity

Search Result 133, Processing Time 0.019 seconds

Optimal Capacity Determination of Hydrogen Fuel Cell Technology Based Trigeneration System And Prediction of Semi-closed Greenhouse Dynamic Energy Loads Using Building Energy Simulation (건물 에너지 시뮬레이션을 이용한 반밀폐형 온실의 동적 에너지 부하 예측 및 수소연료전지 3중 열병합 시스템 적정 용량 산정)

  • Seung-Hun Lee;Rack-Woo Kim;Chan-Min Kim;Hee-Woong Seok;Sungwook Yoon
    • Journal of Bio-Environment Control
    • /
    • v.32 no.3
    • /
    • pp.181-189
    • /
    • 2023
  • Hydrogen has gained attention as an environmentally friendly energy source among various renewable options, however, its application in agriculture remains limited. This study aims to apply the hydrogen fuel cell triple heat-combining system, originally not designed for greenhouses, to greenhouses in order to save energy and reduce greenhouse gas emissions. This system can produce heating, cooling, and electricity from hydrogen while recovering waste heat. To implement a hydrogen fuel cell triple heat-combining system in a greenhouse, it is crucial to evaluate the greenhouse's heating and cooling load. Accurate analysis of these loads requires considering factors such as greenhouse configuration, existing heating and cooling systems, and specific crop types being cultivated. Consequently, this study aimed to estimate the cooling and heating load using building energy simulation (BES). This study collected and analyzed meteorological data from 2012 to 2021 for semi-enclosed greenhouses cultivating tomatoes in Jeonju City. The covering material and framework were modeled based on the greenhouse design, and crop energy and soil energy were taken into account. To verify the effectiveness of the building energy simulation, we conducted analyses with and without crops, as well as static and dynamic energy analyses. Furthermore, we calculated the average maximum heating capacity of 449,578 kJ·h-1 and the average cooling capacity of 431,187 kJ·h-1 from the monthly maximum cooling and heating load analyses.

Estimating the Area of Damage Caused by Gas Pipeline Leakage in Subway Construction Zones (지하철역 공사지역 도시가스 배관 누출로 인한 피해면적 산정)

  • Yang, Yong-Ho;Lee, Jae-Wook;Kong, Ha-Sung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.2
    • /
    • pp.419-427
    • /
    • 2024
  • This study assessed the potential impact of gas leakage resulting from accidental damage to buried urban gas pipelines during perforating operation near subway construction sites. The risk of explosions due to ignition sources such as static electricity, arising from gas infiltrating the subway construction site through storm sewers and sewage pipes, was evaluated using the ALOHA program. The results of the threat zone calculation, which input various parameters of urban gas pipelines such as length, diameter, and pressure, indicated that the flammable area within the vapor cloud extended from 1.2 to 1.4 km (red zone), the blast area ranged from 0.8 to 1.0 km (yellow zone), and the jet fire extended from 45 to 61 m (red zone). This study demonstrates that within the flammable area of the vapor cloud, a specific combination of concentration and conditions can increase flammability. The blast area may experience explosions with a pressure of 1.0 psi, sufficient to break glass windows. In the event of a jet fire, high temperatures and intense radiant heat exposure lead to rapid fire propagation in densely populated areas, posing a high risk of casualties. The findings are presented in terms of the sphere of influence and threat zone ranges.

Exploring Collaborative Learning Dynamics in Science Classes Using Google Docs: An Epistemic Network Analysis of Student Discourse (공유 문서를 활용한 과학 수업에서 나타난 학생 담화의 특징 -인식 네트워크 분석(ENA)의 활용-)

  • Eunhye Shin
    • Journal of The Korean Association For Science Education
    • /
    • v.44 no.1
    • /
    • pp.77-86
    • /
    • 2024
  • This study analyzed students' discourse and learning to investigate the impact of using Google Docs in science classes. The researcher, who is also a science teacher, conducted classes for 49 second-year middle school students. The classes included one using Google Docs and another using traditional paper worksheets covering identical content. Students' discourse collected from each class was compared and analyzed using Epistemic Network Analysis (ENA). The findings indicated that in the class using Google Docs, the proportion of discourse related to task was higher compared to the traditional class. More specifically, discourse regarding taking and uploading photos was prominent. However, such discourse did not lead to peer learning as intended by the teacher. An analysis based on achievement levels revealed that the class utilizing Google Docs had a relatively higher proportion of discourse from lower-achieving students. Additionally, differences were observed in the types of utterances and connection structures between the higher and lower-achieving students. The higher-achieving students took a leading role in providing suggestions and explanations, while the lower-achieving students played a role in transcribing them, with this tendency being more pronounced in the class using Google Docs. Lastly, students' changes in perception regarding the cause of static electricity were visualized using ENA. Based on the research findings, this study proposes strategies to enhance collaborative learning using Google Docs, including the use of open-ended problems to allow diverse opinions and outputs, and exploring the potential use of ENA to assess the learning effects of conceptual learning.