• Title/Summary/Keyword: static condensation

Search Result 67, Processing Time 0.03 seconds

Thermal response analysis of multi-layered magneto-electro-thermo-elastic plates using higher order shear deformation theory

  • Vinyas, M.;Harursampath, D.;Kattimani, S.C.
    • Structural Engineering and Mechanics
    • /
    • v.73 no.6
    • /
    • pp.667-684
    • /
    • 2020
  • In this article, the static responses of layered magneto-electro-thermo-elastic (METE) plates in thermal environment have been investigated through FE methods. By using Reddy's third order shear deformation theory (TSDT) in association with the Hamilton's principle, the direct and derived quantities of the coupled system have been obtained. The coupled governing equations of METE plates have been derived through condensation technique. Three layered METE plates composed of piezoelectric and piezomagnetic phases are considered for evaluation. For investigating the correctness and accuracy, the results in this article are validated with previous researches. In addition, a special attention has been paid to evaluate the influence of different electro-magnetic boundary conditions and pyrocoupling on the coupled response of METE plates. Finally, the influence of stacking sequences, magnitude of temperature load and aspect ratio on the coupled static response of METE plates are investigated in detail.

Static and Dynamic Analyses of Bending Problems Using 3-Dimensional 10-Node Equivalent Element (3차원 10절점-상당요소에 의한 굽힘문제의 정적.동적해석)

  • 권영두;윤태혁
    • Computational Structural Engineering
    • /
    • v.10 no.4
    • /
    • pp.117-130
    • /
    • 1997
  • In this paper, a modified 10-node equivalent solid element(MQM10 element), which has smallest degrees of freedom among 3-dimensional solid elements accounting bending deformation as well as extensional and shear deformations of isotropic plates, is proposed. The proposed MQM10 element exhibits stiffer bending stiffness due to the reduction of degrees of freedom from 20-node element or Q11 element. As an effective way to correct the relative stiffness stiffening phenomenon, the modification equation of Gauss sampling points is proposed. The quantity of modification is a function of Poisson's ratio. The effectiveness of MQM10 element is tested by applying it to several examples. It is noted that the results of static and free vibration analysis of isotropic plates using MQM10 elements show a good agreement with those using 20-node element.

  • PDF

Economical Dynamic Analysis of Grid Structures (격자항(格子桁) 구조물(構造物)의 경제적(經濟的)인 동적(動的) 해석(解析)에 관한 연구(研究))

  • Choi, Gil Hyun;Lee, Dong Guen;Chung, Young Shik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.1
    • /
    • pp.33-42
    • /
    • 1987
  • Grid structures are extensively used in bridge and slab strucures. When the elements are assembled for the entire structure the number of degree of freedom may be very large and thus, the stiffness, mass, and damping matrices become of large dimension. Undoubtedly, determining natural frequencies and mode shapes of such structures are complicated and require large computer costs. For these reasons various eigenvalue economizer procedures have been developed, which serve to reduce the number of degree of freedom. This paper proposes an economic method of dynamic analysis of grid stuctures using static and dynamic condensation techniques. The accuracy and economy of this method are investigated by comparing some results of model analysis of N-degree of freedom. It has been shown that the method achieves remarkable economy at only a little cost of accuracy.

  • PDF

Efficient Analysis of Building Structures with a Rigid Floor System (주상복합건물의 효율적인 지진해석)

  • 황현식;이동근
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.1 no.1
    • /
    • pp.79-88
    • /
    • 1997
  • Very stiff floor system in a residential-commercial building causes some problems in the numerical analysis procedure due to significant difference in stiffness with adjacent elements. Static analysis of structure with a stiff transfer-floor can be performed approximately in two steps for upper and lower parts for the structure. However, it is impossible to perform dynamic analysis in two steps with separate models. An efficient method for dynamic analysis of a structure with a right floor system is proposd in this study. The matrix condensation technique is employed to reduce the degree of freedom for upper and lower parts of the structure and a beam elements with rigid bodies at both ends are introduce to model the rigid floor system. Efficiency and accuracy of the proposed method are verified through analysis of several example structures.

  • PDF

Static and Natural Vibration Analyses of Bending Problems Using 5-Node Equivalent Element (5절점 상당요소에 의한 굽힘문제의 정적해석 및 자유진동해석)

  • Gwon, Young-Doo;Yun, Tae-Hyeok;Jeong, Seung-Kap;Park, Hyeon-Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.4
    • /
    • pp.1320-1332
    • /
    • 1996
  • In the present study, we consider modified 5-node equivalent solid element which has smallest degree of freedom among 2-dimensional solid elements accounting bending deformation as well as extensional and shear deformations, We shall investigate static and dynamic characteristics of this element, which is very effective in thin beam, thick beam, large displacement problems, beam of variable thickness, and asymmetrically stepped beam, etc., as well as relatively simple problems of beam. The degree of freedom of this element is 10, which is smaller than 18 of 9-node element, 16 of 8-node elemtns, 12 of modified 6-node element and Q6 element. Therefore, this element is expected to broaden the effective range of application of the solid elements in the bending problems further.

A REVIEW ON REDUCTION IN FINITE ELEMENT ANALYSIS

  • Kim, Ki-Ook;Park, Young-Jae
    • Journal of Theoretical and Applied Mechanics
    • /
    • v.3 no.1
    • /
    • pp.1-15
    • /
    • 2002
  • Reduction methods for large structural systems have been reviewed. Mai emphasis is put on the dynamic reduction. Recently, the computing resources and technologies have been expanded so fast that the huge matrices Invoked In the analysis of structural system can be processed without serious difficulties. For most users, however, the computer facilities are limited and the system reductions in some forms are required. The reduction procedure in static problems is simple and straightforward. The major task is the book-keeping in computations. In dynamic problems and structural optimization. however. the problem is much more complicated. The problem is, in general, nonlinear and hence the exact solution is not available. Therefore, approximate solutions are sought in an iterative manner. A proper convergence criterion needs to be employed in order to get an accurate solution efficiently. Several research works have been reported fer the structural optimization combined with system reductions.

  • PDF

Structural Dynamics Analysis of a Clamp Jointed Complex Ream by Using the Flexibility Influence Coefficient Method (유연도 영향계수법을 이용한 접촉결합부가 있는 복합구조물의 동적 해석)

  • 조재혁;김현욱;최영휴
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.528-533
    • /
    • 1995
  • An analyical method is proposed to construct a clamp jointed structure as an equivalent stiffness matrix element in the finite element modal analysis of a complex beam structure. Static structural analysis was first made for the detail finite element model of the clamp joint. Utilizing the results of this analysis, the equivalent stiffness matrix element was buildup by using the flexibility influence coefficient method and Guyan condensation. The proposed method was applied to finite element modal analysis of a clamp jointed cantilever beam. And the finite element analysis results were compared to those experimental modal analysis. Comparison shows doog agreement each other Furthermore the effects of normal contact(or clamping) load on the equivalent stiffness matrix was also examined. The equivalent stiffness matrix showed little change in spite of the remakable increase in the contact load on the clamp joint.

  • PDF

Efficient 3D Analysis of Building Structures with A Rigid Floor System (주상복합구조물의 효율적인 3차원 해석)

  • 황현식;이동근
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1996.10a
    • /
    • pp.239-246
    • /
    • 1996
  • Very stiff floor system in a residential-commercial building causes some problems in the numerical analysis procedure due to significant difference in stiffness with adjacent structural elements. Static analysis of structure with a stiff transfer-floor can be peformed approximately in two steps for upper and lower pons for the structure. However, it is impossible to perform dynamic analysis in two steps with separate models. An efficient method for dynamic analysis of a structure with a rigid floor system is proposed in this study. The matrix condensation technique is employed to reduce the degree of freedom for upper and lower parts of the structure and a beam elements with rigid bodies of both ends are introduce to model the rigid floor system. Efficiency end accuracy of the proposed method ore verified through analysis of several example structures.

  • PDF

Optimal Interpolation Functions of 2-None Hybrid-Mixed Curved Beam Element (두 절점 혼합 곡선 보요소의 보간함수 선정)

  • Kim, Jin-Gon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.12
    • /
    • pp.3003-3009
    • /
    • 2000
  • In this paper, we propose a new efficient hybrid-mixed C(sup)0 curved beam element with the optimal interpolation functions determined from numerical tests, which gives very accurate locking-free two-node curved beam element. In the element level, the stress parameters are eliminated from the stationary condition and the nodeless degrees of freedom are also removed by static condensation so that a standard six-by-six stiffness matrix is finally obtained. The numeri cal benchmark problems show that the element with cubic displacement functions and quadratic stress functions is the most efficient.

Coupled Axial and Torsional Vibration Analysis in Large Diesel Engines and Generators for Stationary Power Plants (내연 발전용 대형 디젤 엔진-발전기 축계의 종-비틈 연성진동 해석)

  • Park, Heui-Joo;Park, Jong-Po
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1040-1045
    • /
    • 2000
  • This paper presents results of coupled axial and torsional vibration analysis of shafting system in large diesel engines and generators for stationary power plants. Axial vibration of the shafting system takes place due to mainly torsional deformation or vibration and breathing effect of crank throws, caused by cylinder gas forces and reciprocating inertia of the engine. Cross-coupled stiffness matrix of the crank throws is calculated employing a finite element model of the crank throw and a static condensation method. Forced response analysis of the shafting system is performed using the calculated stiffness matrix and derived governing equations.

  • PDF