• Title/Summary/Keyword: static code analysis

Search Result 374, Processing Time 0.024 seconds

The Evaluation of the Structural Integrity of Bellows Globe Valve for Nuclear Power (원자력 발전소용 벨로우즈 글로브 밸브에 대한 구조 건전성 평가)

  • Chung, Chul-Sup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.6
    • /
    • pp.1034-1039
    • /
    • 2006
  • The purpose of this paper is to evaluate the structural integrity of the Class 1500 Bellows Seal 3 inch globe valve classified as seismic category IIA. The finite element analysis program, ANSYS, Version 10.0, is used to perform both a modal frequency analysis and an equivalent static stress analysis of the subject valve modeling. The modal frequency analysis results show the fundamental natural frequency is greater than 33 Hz. Therefore the equivalent static stress analysis is performed using the seismic acceleration values. The stresses resulted from various loadings and their combinations are evaluated based on the structural acceptance criteria of the ASME Code. The stresses in the glove valve due to the seismic loadings are within the allowable limits. It is concluded that the globe valve structure is maintaining the structural integrity fur the seismic loading conditions.

  • PDF

New Equivalent Static Analysis Method of Dynamic Behavior during Progressive Collapse (연쇄붕괴의 동적거동을 고려한 새로운 등가정적해석 기법)

  • Kim, Chee-Kyeong;Lee, Jae-Cheol
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.3
    • /
    • pp.239-246
    • /
    • 2007
  • In this paper a new equivalent static analysis method of dynamic behavior during progressive collapse is presented. The proposed analysis method uses the equivalent nodal load for the element stiffness which represents the dynamic behavior influence caused by the deletion of elements during progressive collapse analysis. The proposed analysis method improves the efficiency of progressive collapse analysis haying the iterative characteristic because the inverse of the structural stiffness matrix is roused in the reanalysis. By comparing the results obtained by this analysis method with those of GSA code analysis and time history analysis, it is shown that the results obtained by this analysis method more closely approach to those of time history analysis than by GSA code analysis.

Method of Evaluation of the Strength Required in Current Seismic Design Code (현행 내진설계 규준에서 요구되는 수평강도의 평가 방법)

  • 한상환
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.10a
    • /
    • pp.193-200
    • /
    • 1997
  • Current seismic design code is based of the assumption that the designed structures would be behaved inelastically during a severe earthquake ground motion. For this reason, seismic design forces calculated by seismic codes are much lower than the forces generated by design earthquakes which makes structures responding elastically. Present procedures for calculating seismic design forces are based on the use of elastic spectra reduced by a strength reduction factors known as "response modificaion factor". Because these factors were determined empirically, it is difficult to know how much inelastic behaviors of the structures exhibit. In this study, base shear forces required to maintain target ductility ratio were first calculated from nonlinear dynamic analysis on the single degree of freedom system. And then, base shear foeces specified in seismic design code compare with above results. If the strength(base shear) required strength should be filled by overstrength and/or redundancy. Therefore, overstrength of moment resisting frame structure will be estimated from the results of static nonlinear analysis(push-over analysis).analysis).

  • PDF

The Influence of the Number of Drawbead on Blank Forming Analysis (블랭크 성형해석시 드로우비드 개수가 미치는 영향에 관한 연구)

  • 정동원;이상제
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.2
    • /
    • pp.193-200
    • /
    • 2000
  • In the sheet metal forming process, the drawbead is used to control the flow of material during the forming process. The drawbead provides proper restraining force to the material and prevents defects such as wrinkling or breakage. For these reasons, many studies for designing the effective drawbead have been conducted. In this paper, the influence of the number of drawbead during the blank forming process will be introduced. For the analysis, the numerical method called the static-explicit finite element method was used. The finite element analysis code for this method has been developed and applied to the drawbead process problems. It is expected that this static-explicit finite element method could overcome heavy computation time and convergence problem due to the increase of drawbeads.

  • PDF

Static Analysis Method of Android-specific Problems through Java and Xml Mutual Analysis (자바와 XML 상호 분석을 통한 안드로이드 특화 문제점의 정적 분석 방법)

  • Jung, Jiyong;Baik, Jongmoon
    • KIISE Transactions on Computing Practices
    • /
    • v.22 no.8
    • /
    • pp.351-356
    • /
    • 2016
  • In recent years, as smartphones with Android platforms expand, the number of Android applications increases. Android applications implement Java and XML to compose the user interface, among other things. Between Java and XML, various problems may occur. Nonetheless, static analysis research and tools are not sufficient. In this paper we will list the problems which may occur between Java and XML. Subsequently, we will propose a detection method for them. Using the proposed technique, we found 172 Android-specific problems and 35 performance drop issues in 150 Android applications in the Google Play Store. We would like to contribute to research into static analysis and software quality improvement.

Large deformation finite element analysis for automotive rubber components (자동차용 고무부품에 대한 대변형 유한요소해석)

  • Kim, H. Y.;Choi, C.;Bang, W. J.;Kim, J. S.
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.107-119
    • /
    • 1993
  • The objective of this study is to analyze the static and dynamic characteristics of automotive rubber components by computer simulation. Bush / rectangular type engine mounts and wind shield weather strip are analyzed by using the commercial code ABAQUS and the results are verified by experiments. Large deformation static response is analyzed in order to get the information about the deformation pattern and static stiffness of engine mounts, and about the seperation force of wind shield weather strip from body. The isothermal steady-state dynamic response of components which have been subjected to an initial static pre-load is analyzed for the dynamic stiffness of engine mount rubber components. There are good agreements between simulation and experiments. So it is possible to apply the computer simulation to the design of automotive rubber components.

  • PDF

Warning Classification Method Based On Artificial Neural Network Using Topics of Source Code (소스코드 주제를 이용한 인공신경망 기반 경고 분류 방법)

  • Lee, Jung-Been
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.9 no.11
    • /
    • pp.273-280
    • /
    • 2020
  • Automatic Static Analysis Tools help developers to quickly find potential defects in source code with less effort. However, the tools reports a large number of false positive warnings which do not have to fix. In our study, we proposed an artificial neural network-based warning classification method using topic models of source code blocks. We collect revisions for fixing bugs from software change management (SCM) system and extract code blocks modified by developers. In deep learning stage, topic distribution values of the code blocks and the binary data that present the warning removal in the blocks are used as input and target data in an simple artificial neural network, respectively. In our experimental results, our warning classification model based on neural network shows very high performance to predict label of warnings such as true or false positive.

The Video on Demand System Failure Evaluation of Software Development Step

  • Jang, Jin-Wook
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.4
    • /
    • pp.107-112
    • /
    • 2019
  • Failure testing is a test that verifies that the system is operating in accordance with failure response requirements. A typical failure test approaches the operating system by identifying and testing system problems caused by unexpected errors during the operational phase. In this paper, we study how to evaluate these Failure at the software development stage. Evaluate the probability of failure due to code changes through the complexity and duplication of the code, and evaluate the probability of failure due to exceptional situations with bugs and test coverage extracted from static analysis. This paper studies the possibility of failure based on the code quality of software development stage.

Seismic Evaluation for Strainer in the Primary Cooling System (일차 냉각계통 스트레이너에 대한 내진 건전성 평가)

  • 정철섭
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.3
    • /
    • pp.295-304
    • /
    • 2000
  • To evaluate the structural integrity for the strainer under seismic loading the seismic analysis and design were performed for T-type strainer in accordance with ASME, Section Ⅲ, Class 3(ND). Since there are no specified design requirements for the strainer in ASME Code, the strainer body was analysed according to ND-3500, valve design. Flanged joints connected with PCS piping were designed according to ND-3658.3. And the criteria for the cover flange was governed by the Appendix XI. Both a frequency analysis and an equivalent static seismic analysis of the strainer were carried out using the finite element computer program, ANSYS. The frequency analysis results show the fundamental natural frequency is greater than 33Hz, thus justifying the use of the equivalent static analysis through which membrane and bending stresses are obtained in the critical points near the branch connection area. The results of the seismic evaluation fully satisfied with the structural acceptance criteria of the ASME Code. Accordingly the structural integrity on the strainer body and flanges were proved.

  • PDF

Application of Machine Learning Techniques for the Classification of Source Code Vulnerability (소스코드 취약성 분류를 위한 기계학습 기법의 적용)

  • Lee, Won-Kyung;Lee, Min-Ju;Seo, DongSu
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.30 no.4
    • /
    • pp.735-743
    • /
    • 2020
  • Secure coding is a technique that detects malicious attack or unexpected errors to make software systems resilient against such circumstances. In many cases secure coding relies on static analysis tools to find vulnerable patterns and contaminated data in advance. However, secure coding has the disadvantage of being dependent on rule-sets, and accurate diagnosis is difficult as the complexity of static analysis tools increases. In order to support secure coding, we apply machine learning techniques, such as DNN, CNN and RNN to investigate into finding major weakness patterns shown in secure development coding guides and present machine learning models and experimental results. We believe that machine learning techniques can support detecting security weakness along with static analysis techniques.