• Title/Summary/Keyword: static code analysis

Search Result 374, Processing Time 0.026 seconds

A Parameter Study for Static and Dynamic Denting

  • Jung, Dong-Won;Worswick, M.J.
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.11
    • /
    • pp.2009-2020
    • /
    • 2004
  • A parametric study of the factors controlling static and dynamic denting, as well as local stiffness, has been made on simplified panels of different sizes, curvatures, thicknesses and strengths. Analyses have been performed using the finite element method to predict dent resistance and panel stiffness. A parametric approach is used with finite element models of simplified panels. Two sizes of panels with square plan dimensions and a wide range of curvatures are analysed for several combinations of material thickness and strength, all representative of auto-motive closure panels. Analysis was performed using the implicit finite element code, LS-NIKE, and the explicit dynamic code, LS-DYNA for the static and dynamic cases, respectively. Panel dent resistance and stiffness behaviour are shown to be complex phenomena and strongly interrelated. Factors favouring improved dent resistance include increased yield strength and panel thickness. Panel stiffness also increases with thickness and with higher curvatures but decreases with size and very low curvatures. Conditions for best dynamic and static dent performance are shown to be inherently in conflict ; that is, panels with low stiffness tend to perform well under impact loading but demonstrate inferior static dent performance. Stiffer panels are prone to larger dynamic dents due to higher contact forces but exhibit good static performance through increased resistance to oil canning.

Seismic assessment and retrofitting of existing structure based on nonlinear static analysis

  • Ni, Pengpeng
    • Structural Engineering and Mechanics
    • /
    • v.49 no.5
    • /
    • pp.631-644
    • /
    • 2014
  • Seismic assessment and retrofitting of existing structure is a complicated work that typically requires more sophisticated analyses than performing a new design. Before the implementation of a Code for seismic design of buildings (GBJ 11-89), not enough attention has been paid on seismic performance of structures and a great part of the existing reinforced concrete structures built in China have been poorly designed according to the new version of the same code (GB 50011-2010). This paper presents a case study of seismic assessment of a non-seismically designed reinforced concrete building in China. The structural responses are evaluated using the nonlinear static procedure (the so-called pushover analysis), which requires its introduction within a process that allows the estimation of the demand, against which the capacity is then compared with. The capacity of all structural members can be determined following the design code. Based on the structural performance, suitable retrofitting strategies are selected and implemented to the existing system. The retrofitted structure is analyzed again to check the effectiveness of the rehabilitation. Different types of retrofitting strategy are discussed and classified according to their complexity and benefits. Finally, a proper intervention methodology is utilized to upgrade this typical low-rise non-ductile building.

Fine Grain Real-Time Code Scheduling Using an Adaptive Genetic Algorithm (적합 유전자 알고리즘을 이용한 실시간 코드 스케쥴링)

  • Chung, Tai-Myoung
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.6
    • /
    • pp.1481-1494
    • /
    • 1997
  • In hard real-time systems, a timing fault may yield catastrophic results. Dynamic scheduling provides the flexibility to compensate for unexpected events at runtime; however, scheduling overhead at runtime is relatively large, constraining both the accuracy of the timing and the complexity of the scheduling analysis. In contrast, static scheduling need not have any runtime overhead. Thus, it has the potential to guarantee the precise time at which each instruction implementing a control action will execute. This paper presents a new approach to the problem of analyzing high-level language code, augmented by arbitrary before and after timing constraints, to provide a valid static schedule. Our technique is based on instruction-level complier code scheduling and timing analysis, and can ensure the timing of control operations to within a single instruction clock cycle. Because the search space for a valid static schedule is very large, a novel adaptive genetic search algorithm was developed.

  • PDF

Investigating the effect of bond slip on the seismic response of RC structures

  • Fallah, Mohammad Mehdi;Shooshtari, Ahmad;Ronagh, Hamid Reza
    • Structural Engineering and Mechanics
    • /
    • v.46 no.5
    • /
    • pp.695-711
    • /
    • 2013
  • It is reasonable to assume that reinforced concrete (RC) structures enter the nonlinear range of response during a severe ground motion. Numerical analysis to predict the behaviour therefore must allow for the presence of nonlinear deformations if an accurate estimate of seismic response is aimed. Among the factors contributing to inelastic deformations, the influence of the degradation of the bond slip phenomenon is important. Any rebar slip generates an additional rotation at the end regions of structural members which are not accounted for in a conventional analysis. Although these deformations could affect the seismic response of RC structures considerably, they are often neglected due to the unavailability of suitable models. In this paper, the seismic response of two types of RC structures, designed according to the Iranian concrete code (ABA) and the Iranian seismic code (2800), are evaluated using nonlinear dynamic and static analyses. The investigation is performed using nonlinear dynamic and static pushover analysis considering the deformations due to anchorage slip. The nonlinear analysis results confirm that bond slip significantly influences the seismic behavior of RC structure leading to an increase of lateral deformations by up to 30% depending on the height of building. The outcomes also identify important parameters affecting the extent of this influence.

The Generation of the Function Calls Graph of an Obfuscated Execution Program Using Dynamic (동적 분석을 이용한 난독화 된 실행 프로그램의 함수 호출 그래프 생성 연구)

  • Se-Beom Cheon;DaeYoub Kim
    • Journal of IKEEE
    • /
    • v.27 no.1
    • /
    • pp.93-102
    • /
    • 2023
  • As one of the techniques for analyzing malicious code, techniques creating a sequence or a graph of function call relationships in an executable program and then analyzing the result are proposed. Such methods generally study function calling in the executable program code through static analysis and organize function call relationships into a sequence or a graph. However, in the case of an obfuscated executable program, it is difficult to analyze the function call relationship only with static analysis because the structure/content of the executable program file is different from the standard structure/content. In this paper, we propose a dynamic analysis method to analyze the function call relationship of an obfuscated execution program. We suggest constructing a function call relationship as a graph using the proposed technique.

Failure analysis of composite plates under static and dynamic loading

  • Ray, Chaitali;Majumder, Somnath
    • Structural Engineering and Mechanics
    • /
    • v.52 no.1
    • /
    • pp.137-147
    • /
    • 2014
  • The present paper deals with the first ply failure analysis of the laminated composite plates under various static and dynamic loading conditions. Static analysis has been carried out under patch load and triangular load. The dynamic failure analysis has been carried out under triangular pulse load. The formulation has been carried out using the finite element method and a computer code has been developed. The first order shear deformation theory has been applied in the present formulation. The displacement time history analysis of laminated composite plate has been carried out and the results are compared with those published in literature to validate the formulation. The first ply failure load for laminated composite plates with various lamination schemes under static and dynamic loading conditions has been calculated using various failure criteria. The failure index-time history analysis has also been carried out and presented in this paper.

Static and dynamic finite element analysis of honeycomb sandwich structures

  • Triplett, Matt H.;Schonberg, William P.
    • Structural Engineering and Mechanics
    • /
    • v.6 no.1
    • /
    • pp.95-113
    • /
    • 1998
  • The extensive use of honeycomb sandwich structures has led to the need to understand and analyze their low velocity impact response. Commercially available finite element software provides a possible analysis tool for this type of problem, but the validity of their material properties models for honeycomb materials must be investigated. Three different problems that focus on the effect of differences in honeycomb material properties on static and dynamic response are presented and discussed. The first problem considered is a linear elastic static analysis of honeycomb sandwich beams. The second is a nonlinear elastic-plastic analysis of a circular honeycomb sandwich plate. The final problem is a dynamic analysis of circular honeycomb sandwich plates impacted by low velocity projectiles. Results are obtained using the ABAQUS final element code and compared against experimental results. The comparison indicates that currently available material properties models for honeycomb materials can be used to obtain a good approximation of the behavior of honeycomb sandwich structures under static and dynamic loading conditions.

Comparative Study on the Results of Seismic Design by Dynamic Analysis Method (동적 해석법을 이용한 내진설계 결과의 비교 고찰)

  • 이성우;노홍식;심규점
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1991.10a
    • /
    • pp.81-89
    • /
    • 1991
  • Recently increasing number of highrise buildings are aseismically designed by dynamic analysis method. To perform comparative study on the results of seismic design by dynamic analysis method, five-to thirty-story building models of ductile moment resisting frames and braced frames are considered. Base shears of these models using the spectrum of equivalent static method in the current Korean code and the ones of dynamic analysis method in the UBC-88 code are compared. Based on this study design spectra to be used in the dynamic analysis in Korea are proposed and the results are compared.

  • PDF

Android Application Call Relationship Analysis Based on DEX and ELF Binary Reverse Engineering (DEX와 ELF 바이너리 역공학 기반 안드로이드 어플리케이션 호출 관계 분석에 대한 연구)

  • Ahn, Jinung;Park, Jungsoo;Nguyen-Vu, Long;Jung, Souhwan
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.1
    • /
    • pp.45-55
    • /
    • 2019
  • DEX file and share objects (also known as the SO file) are important components that define the behaviors of an Android application. DEX file is implemented in Java code, whereas SO file under ELF file format is implemented in native code(C/C++). The two layers - Java and native can communicate with each other at runtime. Malicious applications have become more and more prevalent in mobile world, they are equipped with different evasion techniques to avoid being detected by anti-malware product. To avoid static analysis, some applications may perform malicious behavior in native code that is difficult to analyze. Existing researches fail to extract the call relationship which includes both Java code and native code, or can not analyze multi-DEX application. In this study, we design and implement a system that effectively extracts the call relationship between Java code and native code by analyzing DEX file and SO file of Android application.

Design and Implementation of Framework for Static Execution Flow Trace of Binary Codes (이진 코드의 정적 실행 흐름 추적을 위한 프레임워크 설계 및 구현)

  • Baek, Yeong-Tae;Kim, Ki-Tae;Jun, Sang-Pyo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.6
    • /
    • pp.51-59
    • /
    • 2011
  • In domestic, the binary code analysis technology is insufficient. In general, an executable file that is installed on your computer without the source code into an executable binary files is given only the most dangerous, or because it is unknown if the action is to occur. In this paper, static program analysis at the binary level to perform the design and implementation framework. In this paper, we create a control flow graph. We use the graph of the function call and determine whether dangerous. Through Framework, analysis of binary files is easy.