• Title/Summary/Keyword: static buckling

Search Result 262, Processing Time 0.021 seconds

On the static stability of nonlocal nanobeams using higher-order beam theories

  • Eltaher, M.A.;Khater, M.E.;Park, S.;Abdel-Rahman, E.;Yavuz, M.
    • Advances in nano research
    • /
    • v.4 no.1
    • /
    • pp.51-64
    • /
    • 2016
  • This paper investigates the effects of thermal load and shear force on the buckling of nanobeams. Higher-order shear deformation beam theories are implemented and their predictions of the critical buckling load and post-buckled configurations are compared to those of Euler-Bernoulli and Timoshenko beam theories. The nonlocal Eringen elasticity model is adopted to account a size-dependence at the nano-scale. Analytical closed form solutions for critical buckling loads and post-buckling configurations are derived for proposed beam theories. This would be helpful for those who work in the mechanical analysis of nanobeams especially experimentalists working in the field. Results show that thermal load has a more significant impact on the buckling behavior of simply-supported beams (S-S) than it has on clamped-clamped (C-C) beams. However, the nonlocal effect has more impact on C-C beams that it does on S-S beams. Moreover, it was found that the predictions obtained from Timoshenko beam theory are identical to those obtained using all higher-order shear deformation theories, suggesting that Timoshenko beam theory is sufficient to analyze buckling in nanobeams.

Transverse buckling analysis of spatial diamond-shaped pylon cable-stayed bridge based on energy approach

  • Zheng, Xing;Huang, Qiao;Zheng, Qing-gang;Li, Zhen
    • Structural Engineering and Mechanics
    • /
    • v.83 no.1
    • /
    • pp.123-134
    • /
    • 2022
  • The stability of cable-stayed bridges is an important factor considered during design. In recent years, the novel spatial diamond-shaped bridge pylon has shown its advantages in various aspects, including the static response and the stability performance with the development of cable-stayed bridge towards long-span and heavy-load. Based on the energy approach, this paper presents a practical calculation method of the completed state stability of a cable-stayed bridge with two spatial diamond-shaped pylons. In the analysis, the possible transverse buckling of the girder, the top pylon column, and the mid pylon columns are considered simultaneously. The total potential energy of the spatial diamond-shaped pylon cable-stayed bridge is calculated. And based on the principle of stationary potential energy, the transverse buckling coefficients and corresponding buckling modes are obtained. Furthermore, an example is calculated using the design parameters of the Changtai Yangtze River Bridge, a 1176 m cable-stayed bridge under construction in China, to verify the effectiveness and accuracy of the proposed method in practical engineering. The critical loads and the buckling modes derived by the proposed method are in good agreement with the results of the finite element method. Finally, cable-stayed bridges varying pylon and girder stiffness ratios and pylon geometric dimensions are calculated to discuss the applicability and advantages of the proposed method. And a further discussion on the degrees of the polynomial functions when assuming buckling modes are presented.

Buckling of axially graded columns with varying power-law gradients

  • Li, X.F.;Lu, L.;Hu, Z.L.;Huang, Y.;Xiao, B.J.
    • Steel and Composite Structures
    • /
    • v.45 no.4
    • /
    • pp.547-554
    • /
    • 2022
  • This paper studies the static stability of an axially graded column with the power-law gradient varying along the axial direction. For a nonhomogeneous column with one end linked to a rotational spring and loaded by a compressive force, respectively, an Euler problem is analyzed by solving a boundary value problem of an ordinary differential equation with varying coefficients. Buckling loads through the characteristic equation with the aid of the Bessel functions are exactly given. An alternative way to approximately determine buckling loads through the integral equation method is also presented. By comparing approximate buckling loads with the exact ones, the approximate solution is simple in form and enough accurate for varying power-law gradients. The influences of the gradient index and the rotational spring stiffness on the critical forces are elucidated. The critical force and mode shapes at buckling are presented in graph. The critical force given here may be used as a benchmark to check the accuracy and effectiveness of numerical solutions. The approximate solution provides a feasible approach to calculating the buckling loads and to assessing the loss of stability of columns in engineering.

Study on Buckling Instability of Expansion Tube using Finite Element Method (유한요소법을 이용한 팽창튜브의 좌굴불안전성에 관한 연구)

  • Choi, Won-Mok;Kwon, Tae-Su;Jung, Hyun-Sung
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.2
    • /
    • pp.147-151
    • /
    • 2010
  • Since the kinetic energy is dissipated through plastic deformation energy generated in expanding process of the tube by a die. In order to successfully absorb the kinetic energy there should be no buckling in the expansion tube during expanding process. The buckling instability of the expansion tubes is affected by the initial boundary conditions, tube thickness and length. In this study, the effects of the tube thickness except length and initial boundary condition on the buckling instability are studied using a finite element method. In addition, Analysis procedure for nonlinear post-buckling analysis of expansion tube is established. There are three kinds of finite element analysis procedures for buckling analysis of expansion tube, quasi-static analysis, linear buckling analysis and nonlinear post-buckling analysis. The effect of the geometry imperfections defined as linear superimposition of buckling modes is considered in the nonlinear post-buckling analysis. The results of finite element analysis indicate that the buckling load increase with increase of thickness of tube and geometry imperfection. Finial buckling shapes are changed with respect to the geometry imperfection.

Buckling of plates including effect of shear deformations: a hyperelastic formulation

  • Musa, Idris A.
    • Structural Engineering and Mechanics
    • /
    • v.57 no.6
    • /
    • pp.1107-1124
    • /
    • 2016
  • Consistent finite strain Plate constitutive relations are derived based on a hyperelastic formulation for an isotropic material. Plate equilibrium equations under finite strain are derived following a static kinematic approach. Three Euler angles and four shear angles, based on Timoshenko beam theory, represent the kinematics of the deformations in the plate cross section. The Green deformation tensor has been expressed in term of a deformation tensor associated with the deformation and stretches of an embedded plate element. Buckling formulation includes the in-plane axial deformation prior to buckling and transverse as well as in-plane shear deformations. Numerical results for a simply supported thick plate under uni-axial compression force are presented.

Sensitivity Analysis and Optimization of Nonlinear Vehicle Frame Structures (비선형 차체프레임구조물의 민감도해석 및 최적화)

  • Won, Chong-Jin;Lee, Jong-Sun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.9
    • /
    • pp.2833-2842
    • /
    • 1996
  • This paper is to practice optimal rigidity design by the strain energy density estimation method for static buckling and sizing design sensitivity analysis for dynamic buckling of a nonlinear vehicle frame structure from those results. Using these sizing design sensitivity resutls, an optimization of a nonlinear vehicle frame structure with dynamic buckling constraint is carrried out with the graient projection method.

The Buckling Analysis of Shells of Revolution (회전(回轉) SHELL의 좌굴(挫屈) 해석(解析))

  • S.J.,Yim;C.D.,Jang;C.H.,Youn
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.21 no.2
    • /
    • pp.19-27
    • /
    • 1984
  • An extension of the finite element method to the stability analysis of shells of revolution under static axisymmetric loading is presented in this paper. A systematic procedure for the formulation of the problem is based upon the principle of virtual work. This procedure results in an eigenvalue problem. For solution, the shell of revolution is discretized into a series of conical frusta. The buckling mode in the circumferential direction is assumed, this assumption makes the problem economical for the computing time. The present method is applied to a number of shells of revolution, under axial compression or lateral pressure, and comparision are made with other theoretical results. The results show good agreement each other. The effects of aspect ratio, boundary conditions and buckling modes on the buckling strength of shells of revolution are studied. Also the optimum shape of cylindrical shell under uniform axial compression is obtained from the view point of structural stability.

  • PDF

On static stability of electro-magnetically affected smart magneto-electro-elastic nanoplates

  • Ebrahimi, Farzad;Barati, Mohammad Reza
    • Advances in nano research
    • /
    • v.7 no.1
    • /
    • pp.63-75
    • /
    • 2019
  • This article represents a quasi-3D theory for the buckling investigation of magneto-electro-elastic functionally graded (MEE-FG) nanoplates. All the effects of shear deformation and thickness stretching are considered within the presented theory. Magneto-electro-elastic material properties are considered to be graded in thickness direction employing power-law distribution. Eringen's nonlocal elasticity theory is exploited to describe the size dependency of such nanoplates. Using Hamilton's principle, the nonlocal governing equations based on quasi-3D plate theory are obtained for the buckling analysis of MEE-FG nanoplates including size effect and they are solved applying analytical solution. It is found that magnetic potential, electric voltage, boundary conditions, nonlocal parameter, power-law index and plate geometrical parameters have significant effects on critical buckling loads of MEE-FG nanoscale plates.

Flexoelectric effect on buckling and vibration behaviors of piezoelectric nano-plates using a new deformation plate theory

  • Bui Van Tuyen;Du Dinh Nguyen;Abdelouahed Tounsi
    • Steel and Composite Structures
    • /
    • v.48 no.6
    • /
    • pp.709-725
    • /
    • 2023
  • This paper uses a new type of deformation theory to establish the free vibration and static buckling equations of nanoplates resting on two-parameter elastic foundations, in which the flexoelectric effect is taken into account. The proposed approach used in this work is not only simpler than other higher-order shear deformation theories but also does not need any shear correction coefficients to describe exactly the mechanical responses of structures. The reliability of the theory is verified by comparing the numerical results of this work with those of analytical solutions. The results show that the flexoelectric effect significantly changes the natural frequency and the critical buckling load of the nanoplate compared with the case of neglecting this effect, especially when the plate thickness changes and with some different boundary conditions. These are new results that have not been mentioned in any publications but are meaningful in engineering practice.

Behavior factors for mixed reinforced concrete wall and buckling restrained braced frame

  • Hamid Beiraghi;Behdad Abbaspour
    • Structural Engineering and Mechanics
    • /
    • v.86 no.2
    • /
    • pp.277-290
    • /
    • 2023
  • A supplementary reinforced concrete wall can be used to improve the seismic behavior of a buckling restrained braced frame as a mixed system. In such a novel system, the total lateral force is resisted by the combination of the RC wall system and the BRBF. There is not enough research on the response modification factor of such a mixed system. This paper investigates the response modification factor, and such relevant factors as ductility reduction factor and over strength factor for a system consisting of reinforced concrete wall and buckling restrained braced frame. To this purpose, nonlinear incremental dynamic analysis as well as static push over analysis are used for 6- to 14-story sample structures. The results show that for mixed considered systems, the mean value of response modification factor varies approximately from 7 to 9.