• 제목/요약/키워드: static and dynamic response

검색결과 698건 처리시간 0.024초

Extraction of quasi-static component from vehicle-induced dynamic response using improved variational mode decomposition

  • Zhiwei Chen;Long Zhao;Yigui Zhou;Wen-Yu He;Wei-Xin Ren
    • Smart Structures and Systems
    • /
    • 제31권2호
    • /
    • pp.155-169
    • /
    • 2023
  • The quasi-static component of the moving vehicle-induced dynamic response is promising in damage detection as it is sensitive to bridge damage but insensitive to environmental changes. However, accurate extraction of quasi-static component from the dynamic response is challenging especially when the vehicle velocity is high. This paper proposes an adaptive quasi-static component extraction method based on the modified variational mode decomposition (VMD) algorithm. Firstly the analytical solutions of the frequency components caused by road surface roughness, high-frequency dynamic components controlled by bridge natural frequency and quasi-static components in the vehicle-induced bridge response are derived. Then a modified VMD algorithm based on particle swarm algorithm (PSO) and mutual information entropy (MIE) criterion is proposed to adaptively extract the quasi-static components from the vehicle-induced bridge dynamic response. Numerical simulations and real bridge tests are conducted to demonstrate the feasibility of the proposed extraction method. The results indicate that the improved VMD algorithm could extract the quasi-static component of the vehicle-induced bridge dynamic response with high accuracy in the presence of the road surface roughness and measurement noise.

부방향 동압력을 이용한 압전형 압력센서의 교정기법 (A Dynamic Calibration Technique for Piezoelectric Sensors Using Negative Going Dynamic Pressure)

  • 김응수
    • 한국군사과학기술학회지
    • /
    • 제12권4호
    • /
    • pp.491-499
    • /
    • 2009
  • The determination of response characteristics for pressure sensors is routinely limited to static calibration against a deadweight pressure standard. The strength of this method is that the deadweight device is a primary standard used to generate precise pressure. Its weakness lies in the assumption that the static and dynamic responses of the sensor in question are equivalent. Differences in sensor response to static and dynamic events, however, can lead to serious measurement errors. Dynamic techniques are required to calibrate pressure sensors measuring dynamic events in milliseconds. In this paper, a dynamic calibration using negative going dynamic pressure is proposed to determine dynamic pressure response for piezoelectric sensors. Sensitivity and linearity of sensor by the dynamic calibration were compared with those by the static calibration. The uncertainty of calibration results and the goodness of fit test of linear regression analysis were presented. The results show that the dynamic calibration is applicable to determine dynamic pressure response for piezoelectric sensors.

동하중으로부터 변환된 등가정하중을 통한 구조물의 형상최적설계 (Structural Shape Optimization under Static Loads Transformed from Dynamic Loads)

  • 박기종;이종남;박경진
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1262-1269
    • /
    • 2003
  • In structural optimization, static loads are generally utilized although real external forces are dynamic. Dynamic loads have been considered in only small-scale problems. Recently, an algorithm for dynamic response optimization using transformation of dynamic loads into equivalent static loads has been proposed. The transformation is conducted to match the displacement fields from dynamic and static analyses. The algorithm can be applied to large-scale problems. However, the application has been limited to size optimization. The present study applies the algorithm to shape optimization. Because the number of degrees of freedom of finite element models is usually very large in shape optimization, it is difficult to conduct dynamic response optimization with the conventional methods that directly threat dynamic response in the time domain. The optimization process is carried out via interfacing an optimization system and an analysis system for structural dynamics. Various examples are solved to verify the algorithm. The results are compared to the results from static loads. It is found that the algorithm using static loads transformed from dynamic loads based on displacement is valid even for very large-scale problems such as shape optimization.

  • PDF

동하중으로부터 변환된 등가정하중을 통한 구조물의 형상최적설계 (Structural Shape Optimization under Static Loads Transformed from Dynamic Loads)

  • 박기종;이종남;박경진
    • 대한기계학회논문집A
    • /
    • 제27권8호
    • /
    • pp.1363-1370
    • /
    • 2003
  • In structural optimization, static loads are generally utilized although real external forces are dynamic. Dynamic loads have been considered in only small-scale problems. Recently, an algorithm for dynamic response optimization using transformation of dynamic loads into equivalent static loads has been proposed. The transformation is conducted to match the displacement fields from dynamic and static analyses. The algorithm can be applied to large-scale problems. However, the application has been limited to size optimization. The present study applies the algorithm to shape optimization. Because the number of degrees of freedom of finite element models is usually very large in shape optimization, it is difficult to conduct dynamic response optimization with the conventional methods that directly threat dynamic response in the time domain. The optimization process is carried out via interfacing an optimization system and an analysis system for structural dynamics. Various examples are solved to verify the algorithm. The results are compared to the results from static loads. It is found that the algorithm using static loads transformed from dynamic loads based on displacement is valid even for very large-scale problems such as shape optimization.

등가정하중을 사용한 선형 동적반응 위상최적설계 기초연구 (Preliminary Study on Linear Dynamic Response Topology Optimization Using Equivalent Static Loads)

  • 장환학;이현아;박경진
    • 대한기계학회논문집A
    • /
    • 제33권12호
    • /
    • pp.1401-1409
    • /
    • 2009
  • All the forces in the real world act dynamically on structures. Design and analysis should be performed based on the dynamic loads for the safety of structures. Dynamic (transient or vibrational) responses have many peaks in the time domain. Topology optimization, which gives an excellent conceptual design, mainly has been performed with static loads. In topology optimization, the number of design variables is quite large and considering the peaks is fairly costly. Topology optimization in the frequency domain has been performed to consider the dynamic effects; however, it is not sufficient to fully include the dynamic characteristics. In this research, linear dynamic response topology optimization is performed in the time domain. First, the necessity of topology optimization to directly consider the dynamic loads is verified by identifying the relationship between the natural frequency of a structure and the excitation frequency. When the natural frequency of a structure is low, the dynamic characteristics (inertia effect) should be considered. The equivalent static loads (ESLs) method is proposed for linear dynamic response topology optimization. ESLs are made to generate the same response field as that from dynamic loads at each time step of dynamic response analysis. The method was originally developed for size and shape optimizations. The original method is expanded to topology optimization under dynamic loads. At each time step of dynamic analysis, ESLs are calculated and ESLs are used as the external loads in static response topology optimization. The results of topology optimization are used to update the design variables (density of finite elements) and the updated design variables are used in dynamic analysis in a cyclic manner until the convergence criteria are satisfied. The updating rules and convergence criteria in the ESLs method are newly proposed for linear dynamic response topology optimization. The proposed updating rules are the artificial material method and the element elimination method. The artificial material method updates the material property for dynamic analysis at the next cycle using the results of topology optimization. The element elimination method is proposed to remove the element which has low density when static topology optimization is finished. These proposed methods are applied to some examples. The results are discussed in comparison with conventional linear static response topology optimization.

Efficient seismic analysis of multi-story buildings

  • Lee, Dong Guen;Kim, Hee Cheul
    • Structural Engineering and Mechanics
    • /
    • 제4권5호
    • /
    • pp.497-511
    • /
    • 1996
  • The equivalent static force procedure and the response spectrum analysis method are widely used for seismic analyses of multi-story buildings. The equivalent static force procedure is one of the most simple but less accurate method in predicting possible seismic response of a structure. The response spectrum analysis method provides more accurate results while it takes much longer computational time. In the response spectrum method, dynamic response of a multi-story building is obtained by combining modal responses through a proper procedure such as SRSS or CQC method. Since all of the analysis results are expressed in absolute values, structural engineers have difficulties to combine them with the results obtained from the static analysis. Design automation is interrupted at this stage because of the difficulty in the decision of the most critical design load. Pseudo-dynamic analysis method proposed in this study provides more accurate seismic analysis results than those of the equivalent static force procedure since the dynamic characteristics of a structure is considered. And the proposed method has an advantage in combination of the analysis results due to gravity loads and seismic loads since the direction of the forces can be considered.

Dynamic reliability analysis of offshore wind turbine support structure under earthquake

  • Kim, Dong-Hyawn;Lee, Gee-Nam;Lee, Yongjei;Lee, Il-Keun
    • Wind and Structures
    • /
    • 제21권6호
    • /
    • pp.609-623
    • /
    • 2015
  • Seismic reliability analysis of a jacket-type support structure for an offshore wind turbine was performed. When defining the limit state function by using the dynamic response of the support structure, a number of dynamic calculations must be performed in a First-Order Reliability Method (FORM). That means analysis costs become too high. In this paper, a new reliability analysis approach using a static response is used. The dynamic effect of the response is considered by introducing a new parameter called the Peak Response Factor (PRF). The probability distribution of PRF can be estimated by using the peak value in the dynamic response. The probability distribution of the PRF was obtained by analyzing dynamic responses during a set of ground motions. A numerical example is presented to compare the proposed approach with the conventional static response-based approach.

Dynamic response of coal and rocks under high strain rate

  • Zhou, Jingxuan;Zhu, Chuanjie;Ren, Jie;Lu, Ximiao;Ma, Cong;Li, Ziye
    • Geomechanics and Engineering
    • /
    • 제29권4호
    • /
    • pp.451-461
    • /
    • 2022
  • The roadways surrounded by rock and coal will lose their stability or even collapse under rock burst. Rock burst mainly involves an evolution of dynamic loading which behaves quite differently from static or quasi-static loading. To compare the dynamic response of coal and rocks with different static strengths, three different rocks and bituminous coal were selected for testing at three different dynamic loadings. It's found that the dynamic compression strength of rocks and bituminous coal is much greater than the static compression strength. The dynamic compression strength and dynamic increase factor of the rocks both increase linearly with the increase of the strain rate, while those of the bituminous coal are irregular due to the characteristics of multi-fracture and heterogeneity. Moreover, the absorbed energy of the rocks and bituminous coal both increase linearly with an increase in the strain rate. And the ratio of absorbed energy to the total energy of bituminous coal is greater than that of rocks. With the increase of dynamic loading, the failure degree of the sample increases, with the increase of the static compressive strength, the damage degree also increases. The static compassion strength of the bituminous coal is lower than that of rocks, so the number of small-scale fragments was the largest after bituminous coal rupture.

Timoshenko 이론과 유한요소법을 이용한 모터내장형 고속주축계의 정특성/동특성 해석시스템 개발 (Development of a Static and Dynamic Analysis System for Motor-Integrated High-Speed Spindle Systems Using Timoshenko Theory and Finite Element Method)

  • 이용희;김석일;김태형;이재윤
    • 한국정밀공학회지
    • /
    • 제15권8호
    • /
    • pp.11-16
    • /
    • 1998
  • Recently, the motor-integrated spindle systems have been used to simplify the machine tool structure, to improve the motion flexibility of machine tool, and to perform the high-speed machining. In this study, a static and dynamic analysis system for motor-integrated high-speed spindle systems is developed based on Timoshenko theory, finite element method and windows programming techniques. Since the system has various analysis modules related to static deformation analysis, modal analysis, frequency response analysis, unbalance response analysis and so on, it is useful in performing systematically the design and evaluation processes of motor-integrated high-speed spindle systems under windows GUI environment.

  • PDF

Wind-induced dynamic response and its load estimation for structural frames of single-layer latticed domes with long spans

  • Uematsu, Yasushi;Sone, Takayuki;Yamada, Motohiko;Hongo, Takeshi
    • Wind and Structures
    • /
    • 제5권6호
    • /
    • pp.543-562
    • /
    • 2002
  • The main purpose of this study is to discuss the design wind loads for the structural frames of single-layer latticed domes with long spans. First, wind pressures are measured simultaneously at many points on dome models in a wind tunnel. Then, the dynamic response of several models is analyzed in the time domain, using the pressure data obtained from the wind tunnel experiment. The nodal displacements and the resultant member stresses are computed at each time step. The results indicate that the dome's dynamic response is generally dominated by such vibration modes that contribute to the static response significantly. Furthermore, the dynamic response is found to be almost quasi-static. Then, a series of quasi-static analyses, in which the inertia and damping terms are neglected, is made for a wide range of the dome's geometry. Based on the results, a discussion is made of the design wind load. It is found that a gust effect factor approach can be used for the load estimation. Finally, an empirical formula for the gust effect factor and a simple model of the pressure coefficient distribution are provided.